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Chapter 1

Introduction

1.1 Who Am 1?

Dear Reader. I am inviting you to spend many pages with me. Before
deciding whether to accept my invitation, you may want to know who I am.

I was educated as a mathematician; my doctoral thesis was on partial
differential equations. While a student, I worked part-time and summers as a
programmer. At that time, almost all programs were what I call traditional
programs—ones with a single thread of control that take input, produce
output, and stop.

After obtaining my doctorate, I began working on concurrent algorithms—
ones comprising multiple independent threads of control, called processes,
that are executed concurrently. The first concurrent algorithms were meant
to be executed on a single computer, and processes communicated through a
shared memory. Later came distributed algorithms—concurrent algorithms
designed to be executed on multiple computers in which processes commu-
nicate by message passing.

This is not the place for modesty. I was very good at concurrency—both
writing concurrent algorithms and developing the theory underlying them.
The first concurrent algorithm I wrote, published in 1974, is still taught at
universities. In 1978 I published what is probably the first paper on the
theory of distributed computing. I have received many awards and honors
for this work, including a Turing award (generally considered the Nobel
prize of computer science) for “fundamental contributions to the theory and
practice of distributed and concurrent systems.”
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1.2 Who Are You?

You probably belong to one of two classes of people who I will call scien-
tists and engineers. Scientists are computer scientists who are interested in
concurrent computing. If you are a scientist, you should be well-prepared
to decide if this book interests you and to read it if it does.

Engineers are people involved in building concurrent programs. If you
are an engineer, you might have a job title such as programmer, software
engineer, or hardware designer. I need to warn you that this book is about
a science, not about its practical application. Practice is discussed only to
explain the motivation for the science. If you are interested just in using
the science, you should read about the language TLA™ and its tools, which
are the practical embodiment of the science [27, 34]. But if you want to
understand the underlying science, then this book may be for you.

Like many sciences, the book’s science of concurrent programs is based
on mathematics. The book assumes only that you know the math one learns
before entering a university. All other necessary math not introduced along
with the science is explained in Chapter 2. Most of that math is taught at
universities in an introductory math course for computer science students,
though not as rigorously as it is presented here. Scientists should be used to
reading math. You may find the math hard if you’re an engineer. But unless
miseducation has burdened you with an insurmountable fear of mathematics,
I encourage you to give the book a try. Learning the math will improve your
thinking.

1.3 The Origin of the Science

The science that is the subject of this book, which I will call our science,
is a mathematical theory with a practical goal. That goal is to help build
concurrent programs that work correctly. Exactly what “working correctly”
means and why it’s an important goal are explained in Section 1.4. The
origin of our science explains how I came to believe it’s a good foundation
for trying to achieve that goal.

1.3.1 The Origin of the Theory

The first concurrent algorithm was published in 1965 by Edsger Dijkstra [9].
I started writing concurrent algorithms around 1973, and I quickly learned
that they were hard to get right. The many possible orders in which the op-
erations of different processes can be executed leads to an enormous number
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of possible executions that have to be considered. The only way to ensure
that the algorithm worked correctly was to prove that it did.

By the 1970s, a standard approach had been developed for proving cor-
rectness of traditional programs. Around 1975, I and a few other computer
scientists began extending that approach to concurrent algorithms [4, 23, 28,
43]. Concurrent algorithms were usually written in pseudocode plus some
informal explanation of what the pseudocode meant. I came to realize that
all these methods for proving correctness could be explained by describing
a concurrent algorithm as what I am now calling an abstract program; and
an abstract program could be described mathematically.

Correctness of an algorithm was expressed by properties required of its
executions. I came to realize that correctness can also be expressed by
an abstract program—a more abstract, higher-level one than describes the
algorithm. Proving correctness means showing that the abstract program
describing the algorithm implements the abstract program describing its
correctness, and I developed a method for doing that.

This work culminated around 1990 with a way to write an abstract pro-
gram as a single formula [31]. The formula is written in an obscure form
of math called temporal logic. The particular temporal logic is called TLA
(for the Temporal Logic of Actions). Most of the TLA formula for an ab-
stract program consists of ordinary math that expresses essentially what
was described by pseudocode. Temporal logic replaces the informal expla-
nation of the pseudocode. That one abstract program implements another
is expressed as logical implication together with mathematical substitution.

Throughout this period, I was writing correctness proofs of the algo-
rithms I was inventing. This showed me that my way of reasoning with
abstract programs worked in practice. However, I discovered that as my
algorithms got more complicated and the formulas describing them became
larger, the method of writing proofs used by mathematicians became unre-
liable. It could not ensure that all the details were correct. I had to devise
a method of hierarchically structuring proofs to keep track of those details.

1.3.2 The Origin of the Practice

I have spent most of my career as a member of industrial research labs. The
computer science I have done has been motivated by the problems facing
system builders—sometimes before they were aware of those problems. I
have devoted the last part of my career to developing tools to help them—
both intellectual tools to help them think better and programs to help them
detect errors before they are implemented in code. These tools are based on
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what I learned by writing and reasoning about concurrent algorithms.

Programming is not just coding. It requires thinking before we code.
Writing algorithms taught me that there are two things we need to decide
before writing and debugging the code: what the program should do and
how the program should do it. Most programmers think that the code
itself adequately describes “how the program should do it”, but I learned
that we need a higher-level, more abstract description of what the program
does. To emphasize that programming is more than just coding, I now
use the name coding language for what are commonly called programming
languages. That name is used in this book.

An algorithm is an example of a description of how a program should do
something. Concurrent algorithms are hard to understand. To invent them,
I had to be able to write them in the simplest way possible. Algorithms were
usually written in pseudocode to avoid the complexity that real code requires
to permit efficient execution. I developed a way to describe concurrent
algorithms in math that was more precise and no harder to understand
than pseudocode.

Engineers who build complex systems usually recognize the need for
describing what their programs do in a simpler, more abstract way than
with code. I decided that abstract programs written in math provided such
a way for describing the aspects of a system that involve concurrency. By
about 1995, I had designed a complete language called TLA™ that engineers
could use to write abstract programs in TLA.

The abstract programs I know of that have been written by engineers to
describe what a system should do generally consist of about 200-2000 lines
of TLA™T. All but a few of those lines are ordinary math, not temporal logic.
As with code, those formulas are made easy to understand by decomposing
them into smaller pieces. This is done using simple definitions, rather than
the more complex constructs of coding languages.

To formalize mathematics and make it easier to write long formulas, I
had to add to TLA™ some concepts and syntax not present in the math com-
monly used by mathematicians—for example, variable declarations, group-
ing definitions into modules, and notation for substitution. This book uses
TLA, but not TLAT, because the examples with which it illustrates our
science are short and simple.

The kind of hierarchically structured proofs I devised can also be writ-
ten in TLA™, and there is a program for checking the correctness of those
proofs. However, with today’s proof-checking technology, writing machine-
checked proofs takes more time than engineers generally have. By the time
I designed TLA™, model checking had become a practical tool for checking
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the correctness of abstract programs. A model checker can essentially check
correctness of all possible executions of a very small instance of an abstract
program. This turns out to be very effective at detecting errors. There
are two model checkers for abstract programs written in TLA™T, using two
complementary approaches. Model checking is the standard way engineers
check those programs.

A program’s code can, in principle, be described by a (concrete) abstract
program and could, in principle, be written as a TLA™ formula. For a simple
program (or part of a program), the code can be hand-translated to TLA™
and checked with the TLA™ tools. Usually, the length of the program and
the complexity of the coding language makes this impractical.

From the point of view of our science, it makes no difference how long a
formula an abstract program is. We therefore consider a program written in
a coding language to be an abstract program. And since we are considering
only abstract programs, we will let program mean abstract program. We
will call an (abstract) program written in code a concrete program.

Although we don’t write them as formulas, viewing concrete programs as
abstract programs provides a new way of thinking about them. One benefit
of this way of thinking is that understanding what it means for a concrete
program to implement a higher-level abstract program can help avoid coding
erTors.

1.4 Correctness

Thus far, our science has been described as helping to build concurrent
programs that work correctly. Working correctly is a vague concept. Here
is precisely what we take it to mean.

We define a behavioral property to be a condition that is or is not sat-
isfied by an individual execution of a program. For example, termination
is a behavioral property. An execution either terminates or else it doesn’t
terminate, meaning that it keeps executing forever. We say that a program
satisfies a behavioral property if every possible execution of the program sat-
isfies it. A program is considered to work correctly, or simply to be correct,
if it satisfies its desired behavioral properties.

That every possible execution of a program satisfies its behavioral prop-
erties may seem like an unreasonably strong requirement. I would be happy
if a program that I use does the right thing 99.99% of the times I run it. For
many programs, extensive testing can ensure that it does. But it can’t for
most concurrent programs. What a concurrent program does can depend on
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the relative order in which operations by different processes are executed.
This makes the program nondeterministic, meaning that different executions
can do different things, even if the program receives identical inputs. This
can result in an enormous number of possible executions, and testing can
examine only a tiny fraction of them. Moreover, a concurrent program that
has run correctly for years can start producing frequent errors because a
small change to the computer hardware, the operating system, or even the
other programs running at the same time causes incorrect executions that
have never occurred before. The only way to prevent this is to ensure that
every possible execution satisfies the behavioral properties.

Model checking is more effective at finding errors in concurrent programs
than ordinary testing because it checks all possible executions. However,
it does this only on a few small instances of the program—for example,
an instance with few processes or one that allows only a small number of
messages to be in transit at any time.! Engineering judgment is required
to decide if correctness of those instances provides enough confidence in the
correctness of the program.

There is one way testing could find errors in concrete programs. When
building a concurrent system, an abstract program is often used to model
how the processes interact with one another, and correctness of that pro-
gram is checked. The concrete program is then coded by implementing each
process of the more abstract program by a separate process in the code.
Since there is no concurrency within an individual process, testing that the
concrete program implements the more abstract program has a good chance
of finding coding errors. Research on this approach is in progress.

1.5 A Preview

To give you an idea of what our science is like, this section describes in-
formally a simple abstract program for Euclid’s algorithm—a traditional
algorithm that computes a value and stops. It’s a very simple concurrent
program in which the number of processes equals 1. Our science applies to
such programs, although there are simpler sciences that work quite well for
them.

Euclid’s algorithm computes the greatest common divisor (GCD) of two
positive integers that we will call M and N. For example, the GCD of 12 and

LThere are techniques for proving the correctness of a program by model checking a
simpler program, but they have not been implemented for abstract programs written in
TLAY.

Is there a
citation for
this?
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16, written GCD(12,16), equals 4 because 4 is the largest integer such that
12 and 16 are both multiples of that integer. The algorithm is an abstract
program containing two variables that we name x and y. Here is its prose
description.

Start with = equal to M and y equal to N and repeatedly perform the
following action until the program stops:

If the values of variables z and y are equal, then stop; otherwise,
subtract from the variable having the larger value the value of the
other variable.?

I believe most engineers and many scientists can’t explain why an execution
of Euclid’s algorithm computes GCD(M, N), which means that they don’t
understand the algorithm. Here is the explanation provided by our science,
beginning with how we view executions.

We consider an execution to be a sequence of states. For Euclid’s algo-
rithm, a state is an assignment of values to the program variables z and y.
We write the state that assigns 7 to x and 42 to y as [z = 7, y :: 42]. Here is
the sequence of states that is the execution of Euclid’s algorithm for M = 12
and N = 16.

it A s R ]

The states in the sequence are separated with arrows because we naturally
think of an execution going from one state to the next. But in terms of our
science, the algorithm and its execution just are; they don’t go anywhere.

What an algorithm does in the future depends on its current state, not
on what happened in the past. This means that in the final state of the
execution, in which z and y are equal, they equal GCD(M, N) because of
some property that is true of every state of the execution. To understand
Fuclid’s algorithm, we must know what that property is.

That property is GCD(z,y) = GCD(M,N). (Chapter 3 explains how
we show that every state satisfies this property.) Because an execution stops
only when z and y are equal, and GCD (i, 1) equals i for any positive integer
i, this property implies that z and y equal GCD (M, N) in the final state of
the execution.

2You may have seen a more efficient modern version of Euclid’s algorithm that replaces
the larger of z and y by the remainder when it is divided by the smaller. For the purpose
of this example, it makes little difference which we use.
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That the formula GCD(z,y) = GCD(M, N) is true in every state of a
program’s execution is a behavioral property. A behavioral property that
asserts a formula is true in all states of an execution is called an invariance
property, and the formula is called an invariant of the program. Correctness
of any concurrent program depends on it satisfying an invariance property.
To understand why the program is correct, we have to know the invariant
of the program that explains its correctness.

The invariant GCD(z,y) = GCD(M,N) shows that, if Euclid’s algo-
rithm terminates, then it produces the correct output. A traditional pro-
gram must also satisfy the behavioral property of termination. The two
behavioral properties

e The program produces correct output if it terminates.
e The program terminates.

are special cases of the following two classes of behavioral properties that
can be required of a concurrent program:

Safety What the program is allowed to do.
Liveness What the program must eventually do.

These two classes of properties are defined precisely in Section 4.1. Termina-
tion is the only liveness property required of a traditional program. There
are many kinds of liveness properties that can be required of concurrent
programs.

Euclid’s algorithm satisfies its safety requirement (being allowed to ter-
minate only if it has produced the correct output) because the only thing
it is allowed to do is start with = M and y = N and execute its action.
That is, it satisfies its safety requirement because it is assumed to satisfy the
safety property of doing only what the description of the algorithm allows
it to do.

Euclid’s algorithm satisfies its liveness requirement (eventually terminat-
ing) because it is assumed to satisfy the liveness property of eventually per-
forming any action that its description allows it to perform. (Section 3.4.2.8
shows how we prove that the algorithm terminates.)

I have found it best to describe and reason about safety and liveness
in different ways. In our science, temporal logic plays almost no role in
handling safety, but it is central to handling liveness. The TLA formula for
an abstract program is the logical conjunction of a safety property and a
liveness property.
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A single-process algorithm that computes a value and stops doesn’t seem
to be a good example for a science of concurrent programs. So, let’s consider
a concurrent version of Euclid’s algorithm. It’s a two-process version of the
algorithm, suitable for execution on a single computer with the processes
communicating through shared variables. We call the two processes the z
process and the y process. The algorithm uses the same program variables
as the one-process version of Euclid’s algorithm and it begins in the same
starting state, with £ = M and y = N. If the z process hasn’t stopped, it
is allowed to execute the following action whenever the when condition is
true:

When z > y, stop if = y, else subtract the value of y from =z.

Process y is the same as process z, except with z and y interchanged.

Written in pseudocode, this version of Euclid’s algorithm looks differ-
ent from the one-process version. However, if we consider the executions
of the two versions, we see that they are the same. That is, they have the
same sequence of states, where a state is an assignment of values to z and y.
Whether we view Euclid’s algorithm as a one- or two-process algorithm may
affect how we implement it with a concrete program. An implementation
of the two-process algorithm with a two-process concrete program would
probably be less efficient than a single-process implementation of the one-
process algorithm. Since these two versions of the algorithm have the same
executions, from the point of view of correctness they are the same algo-
rithm. Both versions are written as the same TLA formula. More precisely,
their formulas are equivalent. There are many equivalent ways to write a
mathematical formula. How we choose to write the TLA formula for Eu-
clid’s algorithm can depend on whether we view it as a one- or two-process
algorithm.

1.6 Why Math?

The science of bridge building has a mathematical basis, but bridge design-
ers don’t represent a bridge by a mathematical formula. Why should we
describe an abstract program with one? The simple answer is, because we
can. A concrete program is not a physical object; it’s a concept. Code is
just one representation of that concept. While possible in theory, writing a
mathematical representation of a concrete program is not practical. How-
ever, for simpler abstract programs, it is possible; and I've found it to be a
good way to represent them.
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Math has been developed over thousands of years to be simple and ex-
pressive. An abstract program ignores many implementation details, which
often means allowing multiple possible implementations. This is simple to
express in math. Code is designed to describe one way of computing some-
thing. It can be hard or even impossible to write code that allows all those
possibilities. Being based on concepts from coding languages, pseudocode
also lacks the simplicity and expressiveness of math.

One place we want to allow many possible implementations is in describ-
ing what the environment can do. A program can’t work in an arbitrary
environment. An implementation of Euclid’s algorithm will not produce the
correct answer if the operating system can modify the variables z and y. A
concurrent program can interact with its environment in complicated ways,
and we have to state explicitly what the program assumes about its environ-
ment to know if its correct. We usually want to assume as little as necessary
about the environment, which means the abstract program should allow it
to have many different behaviors.

Unanticipated behavior of the environment is a serious source of errors
in concurrent programs. Part of the environment of a program is likely to
be another program, such as an operating system. Avoiding errors may
require finding answers to subtle questions about exactly what that other
program does. This is often difficult, because the only description of what
it does other than its code is likely to be imprecise prose. When writing the
abstract program to describe what our concrete program does, describing
what the environment can do will tell us what questions we have to ask.

The expressiveness of math, embodied in TLA, provides a practical
method of writing and checking the correctness of high-level designs of sys-
tems. Such checking can catch errors early, when they are easier to correct.
TLA™ is used by a number of companies, including Amazon [40], Microsoft,
and Oracle. Math also provides a new way of thinking about programs that
can lead to better programming. There is usually no way to quantify the
result of better thinking, but it was possible in the following instance.

Virtuoso was a real-time operating system. It controlled some instru-
ments on the European Space Agency’s Rosetta spacecraft that explored a
comet. Its creators decided to build the next version from scratch, starting
with a high-level design written in TLA™. They described their experience
in a book [47]. The head of the project, Eric Verhulst, wrote this in an email
to me:

The [TLA™] abstraction helped a lot in coming to a much cleaner ar-
chitecture. One of the results was that the code size is about 10x less
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than in [Virtuoso].?

This result was unusual. It was possible only because the design of the
entire system was described with TLA™T. Usually, TLA™ is used to describe
only critical aspects of a system that involve concurrency, which represent
a small part of the system’s code. But this example dramatically illustrates
that describing abstract programs with mathematics can produce better
programs.

3The book states the reduction in code size to be a factor of 5-10. Verhulst explained
to me that it was impossible to measure the reduction precisely, so the book gave a
conservative estimate; but he believes it was actually a factor of 10.



Chapter 2

Ordinary Math

We will write an abstract program as a mathematical formula. The program
could be quite complex, leading to a long formula. A long formula with a
lot of esoteric mathematics would be impossible to understand. Almost all
the math used in our formulas is ordinary math, consisting of arithmetic,
simple logic, sets, and functions. You should know it already if you took
an introductory university math course for computer science or engineering
students. The ordinary math used in this book is explained in this chapter,
but from a more sophisticated viewpoint than in introductory math courses.
Longer and easier to understand intuitive explanations of most of the math
discussed here can be found on the Web.

We will write an abstract program as a TLA formula. While most of that
formula consists of ordinary math, TLA is a temporal logic, and temporal
logic is not ordinary math. The meaning of TLA formulas will be explained
in terms of ordinary math. However, although not hard to understand,
temporal logic doesn’t satisfy all the properties of ordinary math. Avoiding
mistakes when using it requires a good understanding of precisely what its
formulas mean. Giving a meaning to the formulas of a logic is called defining
a semantics of the logic. This chapter explains how to define a semantics
by defining the meaning of the formulas of ordinary math. Even if you're
familiar with the math presented here, the explanation of its semantics may
be new to you. Therefore, you should at least skim this chapter carefully.

The chapter also describes the method of writing proofs used in this
book, which is quite different from how mathematicians write proofs. This
method makes the proofs easier to understand, which makes them more
reliable. I hope that, some day, engineers will be able to write proofs of
correctness of their abstract programs. The proofs mathematicians write

12
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are too unreliable to provide confidence in the correctness of programs. En-
gineers will have to use the proof method presented here, or something like
it. Scientists would also benefit from using it.

The description of Euclid’s algorithm in Chapter 1 used the program
variables x and y. Program variables are different from the variables of
ordinary math, such as the ones used in elementary algebra. The values of
the program variables z and y in Euclid’s algorithm change during execution
of the algorithm. The values of the variables z and y of elementary algebra
remain the same throughout a calculation. They are like the constants M
and N of Euclid’s algorithm. For now, we will use the term variable to mean
a variable of ordinary math, like the ones of elementary algebra.

We begin with what I believe is the hardest math that you will have to
know—a branch of math that takes people years to learn. It’s much too
difficult to explain here, so I will have to assume that you’ve already learned
it. It’s called arithmetic.

2.1 Arithmetic and Logic

2.1.1 Numbers

Arithmetic is about numbers. The first numbers you learned about are the
positive integers 1, 2, 3, etc. You then learned about more and more kinds of
numbers until eventually you learned about the real numbers, which include
integers, rational numbers like 3/4, and lots of other numbers like —V2
and 7 (which equals 3.14159...). Although the numbers we actually use
are almost always integers, most of our discussion here applies to all real
numbers, so we’'ll let number mean real number.

We’ll use the same notation for the operations of arithmetic that you
learned in school—for example +, / (division), and > ; except that multipli-
cation is written “x” because mathematicians use X to mean something else.
We’ll also use one operator of arithmetic that you probably didn’t learn as
a child. That operator is the modulo operator %, written mod by mathe-
maticians. For any integer n greater than 0 and any integer m, the value of
m % n is the remainder when m is divided by n. The precise definition is
that m % n equals the unique integer r satisfying

m=dx*n+r and 0<r<mn

for some integer d.
When studying arithmetic, you probably spent most of your time learn-
ing to calculate with numbers. We’ll do only a few very simple numerical



CHAPTER 2. ORDINARY MATH 14

calculations. What we will use are the properties of numbers that you should
have learned—for example:

(2.1) 3% (V3+7) = 3xV3)+ (3x*n)

2.1.2 Elementary Algebra

After learning about numbers, you probably continued your study of arith-
metic with a course in what was called elementary algebra, or something sim-
ilar in another language. That course introduced the concept of variables.
A variable represented an unspecified number. You wrote expressions like
z * (y + 3) whose value depends on the values of z and y. For example, if z
equals 2 and y equals —4, then the value of that expression is 2 * (—4 + 3),
which equals —2. You learned how to calculate with expressions containing
variables. For example, you learned that z * (y + 3) equals z x y + x % 3,
regardless of the values of z and y.
There are two kinds of expressions in elementary algebra:

e Ones like z * (y + 3), whose value after substituting numbers for the
variables is a number. We call such an expression a numeric expres-
sion. A number is a numeric expression that has no variables.

e Ones like zx(y+3) > 7, that are either true or false after substituting
numbers for the variables. We call such an expression a formula, and
we say that the value of a formula after substituting numbers for the
variables is either TRUE or FALSE, which are two distinct values called
Booleans. We often say that a formula is true (or false) for some values
of its variables, but that’s just a short way of saying that the value
of the formula obtained by substituting those values for the variables
equals TRUE (or FALSE).

Most of the expressions you wrote in elementary algebra were either formulas
or parts of formulas; and most of the formulas you wrote were equations.
Most of what you did in elementary algebra consisted of solving equations.
That meant finding a single value for each variable such that substituting
those values for the variables in the equations made the equations equal
TRUE.

We're not interested in solving equations. We will describe programs
with formulas, so we need to understand those formulas. This requires
understanding some basic concepts of formulas. The formulas of elementary
algebra are used to explain these concepts because you're familiar with them.
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An important class of formulas are ones that equal TRUE no matter what
values are substituted for their variables. Such a formula is said to be valid;
and the assertion that F' is valid is written = F. For example, the truth of
formula (2.1) is a special case of:

(22) Epx(g+r)=p*xq+px*r

The thing we write as = F is not a formula of elementary algebra. It’s
an assertion about the formula F. We could call = F' a metamathematical
formula or a meta-formula. But = F is the only kind of meta-formula we
need, so we don’t need to delve into metamathematics. I will sometimes call
= F' a meta-formula to remind you that it’s not a formula, but I usually
call it something else like an assertion or a condition. When = F' is true for
an interesting formula F, mathematicians usually call F' a theorem.
Logicians write - F' to mean that the formula F' can be proved from
axioms and proof rules (also called inference rules). They call F' a theorem
if F F is true. Like most mathematicians, we won’t worry about proving
formulas from axioms. We prove something by showing that it follows from
ordinary math, and we reason about the ordinary math as rigorously as
necessary. This book explains how proof rules are used to reduce the proof
of correctness of a program to proofs of simpler mathematical properties.
Most often used are the rules of ordinary math, which are explained in this
chapter. If you need a proof to be completely rigorous, you will have to
learn to use a theorem-proving program; you will never prove things from
axioms. I will call a formula an axiom when we are assuming it to be true
and it can’t be deduced from formulas we have already assumed to be true.
We can deduce (2.1) from (2.2) by the following rule:

Elementary Algebra Instantiation Rule Substituting any numeric
expressions for (some or all of the) variables in a valid formula yields
a valid formula.

For example, applying the rule to (2.2), substituting 3 for p, v/3 for ¢, and
7 for r produces the assertion that (2.1) is a valid formula.

Mathematicians have no standard notation for describing substitution,
and the notation I've seen used by computer scientists is impractical for the
formulas that arise in describing programs. The notation used in this book,
illustrated with substitution for three variables, is that

E WiTH vl + expl, v2 < exp2, v3 + exp3

is the expression obtained from the expression E by simultaneously substi-
tuting expl for vl, exp2 for v2, and exp3 for v3; where v1, v2, and v3 are
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distinct variables and expl, exp2, and exp3 are numeric expressions. For
example

(px(q+7) WITH g <=1, 74 q+5) = p*(r+(qg+s))

As in this example, the WITH expression is usually enclosed in parentheses
when it appears in a formula, otherwise the formula would be difficult to
parse.

2.1.3 An Introduction to Mathglish

Math is precise, but this book isn’t written in math. It’s written in English
that explains math. Explaining the precise meaning of math in the imprecise
language of English is not easy. To help them do this, English-speaking
mathematicians speak and write in a dialect of English I call Mathglish. (I
expect mathematicians use similar dialects of other languages.) Mathglish
differs from English in two ways: It eliminates some of the imprecision of
English by giving a precise meaning to some imprecise English words or to
newly invented words, and it makes the written language more compact by
using mathematical formulas to replace English phrases.

This book is written in Mathglish. This chapter explains the Mathglish
you need to know to read the book. This section discusses the second feature
of Mathglish—the use of formulas to replace prose.

Consider these two sentences:

1. Substituting y + 1 for z in formula (9.42) yields z > y + 1.
2. Formula (9.42) shows us that z > y + 1.

Grammatically, we can see that the two uses of “z > y + 1”7 are different.
In sentence 1 it’s a noun, while in sentence 2 it’s a complete clause. In
sentence 1, “x > y + 1”7 is a formula; in sentence 2 it’s an abbreviation for
“z is greater than or equal to y + 1”7. This grammatical difference tells us
that the two sentences have very different meanings. Sentence 2 asserts that
the formula x > y + 1 is true. The first doesn’t tell us whether it is true or
false. For example, sentence 1 could be followed by:

Since (9.41) implies z < y + 1, this proves that (9.42) is false.

It isn’t always possible to tell just from the sentence whether or not it’s
asserting that a formula is true. For example, we don’t know which the
following sentence is doing.

3. From (9.42) we deduce x > y + 1.
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In that case, we have to look at the context in which the sentence appears.
The formula z > y + 1 can be true only in a context in which some assump-
tions have been made about the values of x and y + 1—assumptions that
are expressed by formulas that are assumed to be true. Sentence 3 asserts
that z > y + 1 is true if and only if formula (9.42) has either been assumed
or shown to be implied by assumptions made about z and y. I have tried to
make it clear by grammar or context what it means when a formula appears
in a sentence in this book.

There’s another source of ambiguity in most mathematical writing that
I have tried to avoid in this book. Almost no mathematicians other than
logicians write the meta-formula = F differently from the formula F. In
most written math, you have to tell from the context which is meant.

2.1.4 Proofs in Elementary Algebra

Engineers now seldom write proofs of correctness of abstract programs.
Hand proofs are not reliable, and computer-checked proofs are usually too
much work because the proofs must be carried out to a very low level of
detail for a computer to check them. However, proof checkers are getting
better. Although we don’t know when it will happen, machine learning
should make it possible for programs to check proofs written at a higher
level—proofs that are much easier to write. The proof method described
here is the best way I know to write those proofs.

Even before proving correctness becomes easier, engineers as well as
computer scientists should learn how to write proofs. Learning how to reason
about a class of formulas is part of understanding those formulas. Learning
how to prove properties of programs teaches you about programs and their
properties.

A mathematician’s proof is a sequence of paragraphs written in Math-
glish. This way of writing proofs is adequate for very simple proofs. How-
ever, it is not reliable for complicated proofs. It is particularly unsuited to
handling the many details in a proof of correctness of a program. This book
teaches you how to write proofs that are easier to read than the proofs writ-
ten by mathematicians. Such proofs make it much harder to prove things
that aren’t true. We will use ordinary paragraph proofs only to prove simple
results and to serve as proof sketches that aren’t meant to be a proof.
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2.1.4.1 An Example

In school, you learned to solve this pair of equations:
(23) 3xx—2%y =7 and Txx+3%xy =1

If you can still do it, you will find that the solution is x = 1 and y = —2. In
any case, you can easily calculate that substituting those values for x and y
makes both of these equations true. But is that the only solution? Are there
other values of z and y for which the equations are true? The procedure
you would have followed to find the solution actually proves that it is the
only one. As an example, we will write that procedure as a proof.

The method of solving equations (2.3) is based on some rules. One is:

Rule EqAdd ASSUME: m =n, p = ¢
PROVE: m+p = n+g¢q

This rule states that if the values of the variables m, n, p, and ¢ make
both the formulas m = n and p = ¢ true, then they make the formula
m~+ p = n+ q true. If the values of those variables make m = n or p = ¢q or
both of them false, then it tells us nothing about the value of m+p = n+q.
For example, suppose we know that these two formulas are true:

(24) 42=2+4+y and 2xz=y+1

We can apply the Elementary Algebra Instantiation Rule by substituting
m<« 42, n+x+y,p<+ 2%z, g« y—+1in rule EqQAdd to deduce this
from (2.4):

(2.5) 42+ 2x2 = (z+y)+ (y+1)
The second rule used in solving (2.3) is:

Rule EqMult ASSUME: m =n
PROVE: pxm=pxn

Another rule that is ubiquitous in mathematics is:

Substitution Rule If el equals e2 and exp is an expression containing
el as a subexpression, then ezp equals the expression obtained from it
by replacing el with e2.

For example, I presume you can calculate with elementary algebra expres-
sions, so you know that 42 + 2 * z equals 2z +42 and (z + y) + (y + 1)
equals £ + 2y + 1. We can then apply the substitution rule twice, the first
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substituting (2.5) for exp and substituting 42 4+ 2 x = for el and 2 x z + 42
for e2 to deduce:

2% +42 = (z4+y)+(y+1)

A second application of the Substitution Rule, substituting (z+y)+ (y +1)
for el and x + 2%y 4+ 1 for e2, then implies the truth of:

2%¥x 442 = z+2xy+1

We now come to the proof that z = 1 and y = —2 is the only solution
to the equations (2.3). The theorem that asserts this and its proof are in
Figure 2.1. The theorem asserts that if the values of z and y make true our
two equations, which are numbered as assumptions 1 and 2, then the two
equations of the PROVE clause must be true for those values of z and y.
This is a precise way to say that 1 and —2 are the only values of z and
y that make equations (2.3) true, without having to give solving a precise
meaning.

The proof consists of a sequence of numbered steps, each but the last one
consisting of a formula and a proof. Each of those first seven steps asserts
that its formula is true if the theorem’s two assumptions are true. That
is, each formula is true for all values of z and y for which the assumptions
are true. A step’s proof explains why the step’s formula is true under those
assumptions.

I think most people would say that the step 1 formula is obtained by
multiplying assumption 1 (our first equation) by 3. The proof gives a more
detailed explanation, saying that truth of the formula follows from the truth
of assumption 1 and the EqMult rule with 3 substituted for p. I didn’t say
what expressions were substituted for m and n because I thought it was
obvious that the left- and right-hand sides of the equation were substituted
for them. But to give you a hint, and in case you’'ve completely forgotten
elementary algebra, I reminded you how to multiply 3 x x — 2y by 3. (I
assumed it was obvious that 3 % 7 equals 21.)

Step 2 is similar, multiplying the second equation by 2, but the proof
leaves the multiplying to you. Step 3 adds the formulas of step 1 and step 2,
which means applying Rule EqAdd. I thought it was obvious what was
being substituted for the variables in that rule. Steps 4, 5, and 7 are similar,
except that, for no particular reason, I used words instead of the symbol <
to describe the substitutions in the rules. Step 5 is applying the Substitution
Rule, with assumption 2 substituted for exp and with x and 1 substituted for
el and e2. Tindicated what was being substituted where, but didn’t mention
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Theorem ASSUME: 1. 3%z —2x%xy =7,
2. Txx+3xy=1

PrROVE: z=1and y = -2

1. 92 —6+xy =21

PRrOOF: By assumption 1 and Rule EqMult with p < 3,
since 3% (3xx —2xy) =9%x — 6% y.

2. l4*xz4+6xy =2

PRrOOF: By assumption 2 and Rule EqMult with p + 2.
3. 23xx =23

PROOF: By steps 1 and 2 and Rule EqAdd.
4. z=1

PROOF: By step 3 and Rule EqMult, substituting 1/23 for p.
5. Tx1+3xy=1

PRrROOF: By step 4 and assumption 2 with 1 substituted for z.
6. 3xy=—6

PrOOF: By step 5 and Rule EqAdd, substituting —7 for m and n.
7.y =-2

PRrROOF: By step 6 and Rule EqMult, substituting 1/3 for p.

8. Q.E.D.
PROOF: By steps 4 and 7.

Figure 2.1: Proof of uniqueness of the solution to (2.3).
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the Substitution Rule. That rule is such a basic part of mathematics that
it is taken for granted and never explicitly mentioned in a proof.

Finally, we come to the last statement. “Q.E.D.” is an abbreviation for
the goal of the proof, which is the PROVE clause of the theorem. In this case,
the goal is to prove the two formulas x = 1 and y = —2. The proof simply
points to the steps in which those formulas are proved. A proof always ends
with a Q.E.D. step, so we’re sure that we’ve actually proved what we were
supposed to.

How we write a proof depends on how hard the proof is and how so-
phisticated we expect the reader of the proof to be. This proof was written
for someone less sophisticated than I expect most readers of this book to
be, since I wanted you to concentrate on the proof style rather than on the
math. A single-paragraph prose proof would probably be fine for a reader
who hasn’t forgotten elementary algebra.

2.1.4.2 Longer Proofs

The kind of proof illustrated by Figure 2.1 is more reliable and easier to
read than a prose proof. It makes clear the sequence of intermediate results
that are being proved and exactly what is being used to prove each of those
results. However, a sequence doesn’t work for the long proofs needed to
prove complex results—such as the correctness of the abstract programs
that engineers write.

The method of handling complexity that’s obvious to an engineer is
hierarchical structuring. Figure 2.2 shows how the proof of Figure 2.1 can
be structured. The high-level proof consists of steps 1, 2, and 3. This level-
1 proof is suggested by the goal of the theorem, which consists of the two
formulas asserted by steps 1 and 2. The proof of its Q.E.D. step (step 3) is
the same as the proof of the Q.E.D. step of the Figure 2.1 proof, except the
steps it refers to have been renumbered.

The proof of step 1 consists of steps 1.1-1.4. Those steps are the same as
steps 14 of Figure 2.1, the Q.E.D. of step 1.4 being the goal of that proof,
which is £ = 1. The proofs of steps 1.1-1.4, which have been omitted to save
space, are the same as the proofs of the corresponding steps of Figure 2.1.
Similarly, the proof of step 2 consists of steps 2.1-2.3, which are the same
as steps 57 of Figure 2.1.

Note that the proof of step 3 is a prose paragraph, while the proofs of
steps 1 and 2 are sequences of steps each with a prose proof. In general,
proofs of some or all of those level-2 steps can be further decomposed. Dif-
ferent parts of the proof can be decomposed down to different levels. It’s a
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l.z=1
1.1. 9xz -6y =21

1.2, 14x24+6xy =2
1.3. 23«2z =23

1.4. Q.E.D.
2. y=-2
21 7x14+3*xy=1

2.2. 3%y =—6

2.3. QED.

3. Q.E.D.
PROOF: By steps 1 and 2.

Figure 2.2: Structured version of the proof in Figure 2.1.

good idea to make a Q.E.D. step a simple paragraph that you write first, so
you don’t waste time proving steps that don’t imply the proof’s goal.

At the bottom of the hierarchical structure are steps whose proof is
written in prose. That prose should be easy to understand, so the reader
can be sure that it’s correct. How easy that has to be depends on the
reader, who may just be you. If you find that the proof isn’t easy enough to
understand, you should decompose it another level. I've found that the way
to avoid errors is to decompose a proof down to the level where the prose
proof is obviously correct, and then go one level deeper. For machine-checked
proofs, the bottom-level proofs are instructions for the proof checker. If the
checker fails to check the proof and you believe the step is correct, then keep
decomposing until either the checker says it’s correct or you see why it’s not.

Long proofs, especially correctness proofs of programs, can be quite deep.
For proofs more than three or four levels deep, we use a compact numbering
system explained in Section 2.1.10.2 below.

In this example, the theorem’s assumptions and goals were mathemati-
cal formulas, as were the assertions made by the steps. This should be the
case for theorems asserting correctness of programs—except perhaps in some
cases at the deepest levels of the proof. In most mathematical proofs, includ-
ing proofs about the math underlying our science of concurrent programs,
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the theorem and the assertions of the steps consist of prose statements, such
as “z is a prime number.” Those statements may be a few sentences long.
The prose describes mathematical formulas, but getting the details exactly
right isn’t as important for those theorems as it is for programs. Hierarchi-
cally structured prose proofs are reliable enough for them.

2.1.5 The Semantics of Elementary Algebra

We are now going to over-analyze elementary algebra. We’ll perform the
kind of hairsplitting that may delight logicians and philosophers, but is of no
interest to scientists and engineers who use the math. But in later chapters
we will use temporal logic. While not difficult, temporal logic is different
from ordinary math in subtle ways. It’s easy even for mathematicians to
make mistakes when using it. Our over-analysis of elementary algebra will
help us avoid those mistakes.

The formulas of elementary algebra are literally strings of characters. To
know if how we reason about them makes sense, we need to know what those
character strings mean. We must give a semantics to elementary algebra.
There’s a philosophical question of how we can do that because we have to
write the meaning in some language, and how do we know what the words
or symbols of that language mean? We're not going to go there.

I believe that I understand arithmetic. I can’t tell you what the number
2 or the number 4 is,! but I understand that 2 + 2 equals 4. That kind of
understanding is good enough. If I can express the meaning of any formula
of elementary algebra in terms of arithmetic, then I am confident that I
understand elementary algebra. I assume your knowledge of arithmetic is
also good enough.

The meaning of a mathematical theory can be expressed in terms of
collections and mappings. Mathematicians generally call a collection a set
and call a mapping a function. For a particular mathematical theory, such as
elementary algebra, we can take collections and mappings to be the same as
sets and functions. However, we don’t want to restrict the values of variables
in abstract programs to be values in some small collection of mathematical
theories. We want to allow the value of a variable to be any mathematical
object. When we do that, we find that a set is a particular kind of collection,
and a function is a particular kind of mapping. Mathematicians sometimes
call a collection a class.

!Mathematicians have defined these numbers, but the explanation of what the things
in those definitions are is no better than our explanation of what a number is.
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We can’t define precisely what a collection is. I could say that a collection
is a bunch of things, but I would then have to define what a bunch is. 1
assume you know what a collection is. The things that a collection is a
collection of are usually called values. For example, the values in the theory
of elementary algebra are numbers.

A mapping M from a collection C of values to a collection D of values
is something that assigns to each value v in C a value M(v) in D. (The
collections C and D can be the same.) We say that such a mapping M is
a mapping on C. For example, we can define a mapping LengthOfName
from a collection of people to the collection of natural numbers by defining
LengthOfName(p) to equal the number of letters in the name of p, for every
person p in a collection D of people. If Jane is in D, then this defines
LengthOfName(Jane) to equal 4.

A predicate is a Boolean-valued mapping—that is a mapping M on a
collection C such that M (v) equals TRUE or FALSE for each value v in C.
The meaning of an elementary algebra formula is a predicate on interpreta-
tions, where an interpretation is a mapping from variables to numbers. We
define the meaning [F] of a formula F' to be the predicate that maps an
interpretation to the Boolean value obtained by replacing each variable in
F by the value assigned to that variable by the interpretation. For example,
if T is an interpretation, then [z +y > 42](T) equals Y(z) + Y(y) > 42. If
Y(z) =3 and Y(y) = 27, then [z + y > 42](Y) equals 3 + 27 > 42, which
equals FALSE.

This definition of [z +y > 42] makes no sense. Here’s why. A semantics
assigns a meaning to a formula. A formula is a string of characters. Its
meaning is a mathematical object. Let’s write the string of characters that is
the formula in a font like this: x+y > 42; and let’s write mathematical objects
like numbers or variables in the font used throughout this book. I claimed
that [x+y>42](T) equals 3+27>42, which is a meaningless combination
of the numbers 3 and 27 and the four characters + > 4 2.

Elementary algebra has a grammar. The grammar tells us that x +y is an
expression but +x+ isn’t, that the + in x+y is an operator with the subex-
pressions x and y as its arguments, and that x+y * z is parsed as x + (y * z).
I assume you know this grammar, so you understand how the expressions
that appear in examples are parsed. To deduce that [x+y>42](T) equals
3427 > 42 for the particular interpretation Y, I replaced x by [x](Y), which
equals 3, and y by [y](Y), which equals 27. T then replaced the syntactic
tokens +, >, and 42 of elementary algebra by the tokens of arithmetic that
are spelled the same. This “punning” works for elementary algebra because
it is so closely related to arithmetic. It won’t work for TLA, so we use a

If you're not
used to reading
formulas with
Greek letters,
go now to
Figure 2.3.
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I have been told that many engineers freak out when they see a
Greek letter like T in a formula. If you’re one of them, now is the
time to get over it. You had no trouble dealing with 7 as a child;
you can now handle a few more Greek letters. They’re used
sparingly in this book, but sometimes representing a particular
kind of object with Greek letters makes the text easier to read.
Here are all the Greek letters used in the book, along with their
English names. You don’t have to remember their names; you
just need to distinguish them from one another.

Lowercase
«a alpha A lambda T pi T tau
B beta 4 mu p tho ¢ phi
0 delta v nu o sigma 1 psi

¢ epsilon (also written ¢)

Uppercase

A Lambda T Upsilon IT Pi ® Phi
A Delta

Figure 2.3: Greek letters used in this book.

more general approach.

We define the meanings of formulas by defining the meanings of all ex-
pressions, which for elementary algebra means formulas and numeric expres-
sions. We define rules for operators that can appear in an expression. For
example, the rule for the operator symbol + in a formula is that for any
character strings erp; and exps describing numeric expressions and any in-
terpretation Y, we define [exp; + expo]](T) to equal [expi](T) + [exp2] ().
We also define [v](Y) to equal Y(v) for a variable v; and for any string dstr
of digits, we define [dstr](Y) to be the number represented by that string
of digits. Thus, if Y(z) =3 and Y(y) = 27, then:

[x+y>42](Y) = [x+y](T) >[42](Y) by the rule for >
= [x](T)+ [y](Y) > 42 by the rules for + and numbers
= 3+ 27 > 42 by the rule for variables
FALSE

It follows immediately from our definition of validity that a formula F' is
valid if and only if [F](Y) equals TRUE for all interpretations Y.

If we were going to do all this very rigorously—for example, to write a
program to calculate the meanings of formulas—we would define a mapping
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from formulas to parse trees and apply the rules to the parse tree. But we
won’t be that compulsive.

Implicit in this exposition is that an interpretation assigns values to all
possible variables, not just the ones in any particular expression. The value
of [F](Y) for a formula F' depends only on the values the interpretation Y
assigns to variables that occur in F'. But letting an interpretation assign
values to all variables simplifies things, because it means we don’t have to
keep track of which variables an interpretation is assigning values to.

We assume that there are infinitely many variables. We do this for the
same reason we assume there are infinitely many integers even though we
only ever use relatively few of them: it makes things simpler not to have to
worry about running out of them.

Let’s review what we have done. An expression is a string of characters.
We define the meaning [ezp] of an expression ezp to be a mapping that
assigns to every interpretation YT a value [exp](T) that is either a number
or a Boolean, where an interpretation Y is a mapping that assigns to each
variable v a value Y(v) that is a number. We define [ezp] by defining
[exp](T) as follows. An expression is either (i) a variable or (ii) a string
of characters that represents an operator op applied to its arguments. In
case (i), Jexp](Y) equals Y(ezp). In case (ii), we define for each operator
op the value of [exp] in terms of the values [arg] for each argument arg of
op in the expression exp. This defines the meaning of the operator op. For
the operator +, we define [[arg; + arge] to be the expression [arg:] + [args]
of arithmetic. The + in [arg; + arge] is a one-character string of characters,
and the + in [arg;] + [arg2] is an operation of arithmetic. We consider an
expression like 42 that represents a number to be an operator that takes no
arguments, where [42]](T) equals 42 for every interpretation Y.

The similarity in the way we write the operator + of elementary algebra
and the + of arithmetic is obviously not accidental. Syntactically, elemen-
tary algebra is an extension of arithmetic to include variables. However, the
formula 2+3 has a different meaning in elementary algebra than in arith-
metic. If we were to give a semantics to a language of arithmetic, then
[2+3] would equal the number 5. In elementary algebra, [2+3] is a map-
ping such that [2+3](T) equals 5 for every interpretation Y. Elementary
algebra is an extension of arithmetic in the sense that if exp; and expo are
two expressions of arithmetic, such as 2+3 and 5, then [exp;] and [ezps]
are equal in the semantics of arithmetic if and only if they’'re equal in the
semantics of elementary algebra.

The purpose of this over-analyzing of elementary algebra was to explain
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what it means to define the meaning of mathematical operators such as +.
From now on, we’ll be less formal—especially when explaining operators of
ordinary math in this chapter.

2.1.6 Arithmetic Logic

In elementary algebra, we can combine numeric expressions using the opera-
tors of arithmetic, but we have no operators for combining formulas. What
we will call arithmetic logic is obtained by adding such operators to ele-
mentary algebra. They are the operators for combining the Boolean values
TRUE and FALSE. Arithmetic is the study of numbers and the operators on
them. So for now, let’s call the study of Boolean values and their operators
Boolean arithmetic. Here are the operators of Boolean arithmetic, and how
they are read in Mathglish:

- negation not = implication implies
A conjunction and = equivalence if and only if
V disjunction or

Implication is sometimes written — or D, and = is sometimes written <
or <.

You've probably already learned about these operators, so they are just
defined briefly here as follows. Negation and conjunction are defined by

- TRUE = FALSE TRUE A TRUE = TRUE
" FALSE = TRUE TRUE A FALSE = FALSE
FALSE A TRUE = FALSE

FALSE A\ FALSE = FALSE

The other operators can be defined in terms of - and A as follows, where =
means equals by definition:

AV B £ —(-AA-B)
A=B £ -AVB
A=B 2 (A= B)A (B=A)

If you're not familiar with Boolean arithmetic, you should write out the
complete definitions of V, =, and =, the way it’s done above for — and A.
Here is a brief explanation of what these operators and their Mathglish
counterparts mean.

—A asserts that A is not true, where not means the same thing in English
and Mathglish
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A A B asserts that A is true and B is true, where and has the same meaning
in both languages.

AV B asserts that A is true or B is true (or both A and B are true). Unlike
or in English, or in Mathglish always allows the possibility that both
formulas are true.

A = B asserts that A is true implies B is true. This means that B must
be true if A is true, but says nothing about B if A is false. Thus,
FALSE = TRUE and FALSE = FALSE both equal TRUE. Reading =
as implies is confusing because A implies B in English means that A
being true causes B to be true, while implies in Mathglish does not.
Only in Mathglish would we say that 24+ 2 =5 implies 2+ 2 =4. A
good way to understand = and the Mathglish implies is that we want

=
(x > 20) implies (x > 10)
to be true for all numbers z, and substituting different numbers for
x shows that we want A = B to equal TRUE except when A = TRUE
and B = FALSE.

A = B asserts that A is true if and only if B is true. In other words, = is
the equality relation for Boolean values. We read = as is equivalent
to. Because we often want to express equivalence, written Mathglish
has the abbreviation iff for if and only if. We sometimes write equals
instead of is equivalent to because it’s shorter.

Here’s how we can write some of the rules and theorems of elementary
algebra in arithmetic logic. Rule EqMult asserts that if m = n is true then
p*xm = px*n is true, for any values of m, n, and p. Therefore, it can be
written as

= (m=n)= (pxrm=pxn)

since = means true for any values of the variables. Rule EqAdd can be
written as

E(m=n)A(p=q¢g = (m+p=n+q)
We can write the theorem of Figure 2.1 as:

Theorem (3xz—2xy=T)A(Txz+3xy=1)=(z=1)A(y=2)
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We don’t write the = because it’s implied by stating the formula as a the-
orem. However, we’ll see below that if we write the theorem this way, then
its proof has to be rewritten.

Observe that A has higher precedence (binds more tightly) than =-.
The operator — has higher precedence than A and V, which have higher
precedence than = and =. Thus

“AANB=CVD equals ((mA)AB)=(CVD)

I don’t know how the following expressions should be parsed, so it’s best
not to write them:

ANBVC A=B=1C

Boolean operators have lower precedence than other operators, including
the operators of arithmetic. The parentheses used above in the statements
of the EqMult and EqAdd rules and in the theorem are needed only to make
the formulas easier to read.

2.1.7 Propositional Logic

Consider these true assertions about arithmetic logic:

(26) (a) E(z>1)=(z>0)
) E(@>DA(r>3)=(@>1)

The first expresses a fact about arithmetic. The second tells us nothing
about arithmetic. It remains true if we replace z > 1 and y > 3 by any two
formulas. It’s really a fact about Boolean arithmetic. To study such facts,
we temporarily abandon arithmetic logic and introduce a logic of Boolean
arithmetic—a logic called propositional logic.

A formula of propositional logic is a syntactically correct sequence of vari-
ables, Boolean operators, and the Boolean values TRUE and FALSE, where the
syntax has been informally described above. Every expression is Boolean-
valued, so all the expressions are formulas. The meaning [F'] of a formula
of propositional logic is defined in the same way we defined the meaning
of a formula of elementary algebra. We just replace numbers with Boolean
values and the operators of arithmetic with the Boolean operators. The
meaning of a propositional logic formula is a predicate on interpretations,
where an interpretation is a predicate on variables. Thus [AAB=A](Y)
equals T(A) A Y(B) = T(A), where A and = in the formula are characters,
while those same symbols in the meaning are the corresponding operators
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of Boolean arithmetic. As in arithmetic logic, = A for a propositional logic
formula A asserts that [A]J(Y) equals TRUE for all interpretations Y.

A wvalid formula of propositional logic is often called a tautology. Here
are some tautologies that are easy to check by substituting the two Booleans
for A; but you should find them obvious from the explanation of the oper-
ators given above. (Remember that = is the equality operator of Boolean
arithmetic.)

E-—A=4 ETRUEANA = A = FALSE A A = FALSE
FAV—-A =TRUE | AA-A =FALSE |=(TRUE= A) = 4
EANA=A EAVA=A = (FALSE = A) = TRUE

The following six tautologies have names. You should find the first five easy
to remember because they can be obtained from familiar laws of arithmetic
by substituting A, V, and = for %, +, and =. The sixth is a bonus that has
no counterpart in ordinary arithmetic.

Commutativity: F AANB = BAA
FAVB =BVA

Associativity: E (AAB)AC =

AN(BAC)
FE(AVB)VC = AV (BV ()

Distributivity: E AA(BV C) = (AANB)V(AANC)
EAV(BAC)= (AVB)A(AV C)

Just as associativity of * implies that we can write a * b % ¢ *x d without
parentheses because it doesn’t matter in which order we compute the prod-
ucts, associativity of A implies that we can write A A B A C A D. Similarly,
associativity of V means we can write AV BV C V D without parentheses.
And as in arithmetic, commutativity implies we can write conjunctions or
disjunctions in any order.

The following two tautologies, which are called De Morgan’s laws, show
how to move negation over disjunction and conjunction when calculating
with Boolean arithmetic.

= ~(AAB) = ~AV-B  E-(AVB) = -AA-B

They are important for understanding and manipulating formulas, and you
should internalize them—for example by understanding why:

=((z =1)A (y =2)) isequivalent to (z # 1)V (y # 2)

An important property of implication is:
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Transitivity: = (A= B) A (B=C) = (A= C)

If A= B is true (in some context), then we say that A is stronger than B,
or B is weaker than A. That’s a Mathglish abbreviation of “stronger /weaker
than or equivalent to”, since A = B implies A = B and B = A. Stronger
means implying at least as many formulas because, by transitivity, A stronger
than B means that if B = (' is true then so is A = C.

We usually manipulate propositional logic formulas to see if one formula
implies or is equivalent to another. Besides the tautologies given above, all
you need to know to do that are the definition of implication and that =
satisfies the usual properties of equality. When manipulating a formula, if
you can’t use transitivity of =, it’s usually best to expand the definition of
= so the formula contains only the operators —, A, and V.

When we describe programs with formulas, the operators of propositional
logic are used more often in those formulas than any other mathematical
operators, except perhaps “=". It’s therefore important to understand them
well and to be comfortable using propositional logic.

Fortunately, propositional logic is really simple because it’s based on
Boolean arithmetic; and Boolean arithmetic is as simple as math can get
because it’s the arithmetic of just two values. However, you may not be
comfortable using propositional logic, either because you never learned it or
because you haven’t spent as much time learning it as you spent learning
elementary algebra. In that case, you may want to supplement what you
learn here by reading about it on the Web. Propositional logic is also called
Boolean algebra, and TRUE and FALSE are also sometimes written as T and
1L oras1andDO.

Even though propositional logic is simple, long formulas can be difficult
to understand. I sometimes find it hard to see if two propositional logic
formulas are equivalent. Instead of spending time trying to use tautologies
to calculate if they’'re the same, I ask a computer. There are propositional
logic calculators on the Web that can be used for that. They can also be
helpful learning tools.

2.1.8 The Propositional Logic of Arithmetic
2.1.8.1 The Logic

The meanings of [F] and = F depend on the logic we're talking about.
So far, we’ve used it for formulas of arithmetic logic and of propositional
logic. There’s an important relation between those two logics: if F' is a valid
formula of propositional logic and we substitute formulas of arithmetic logic
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for the variables of F', then we obtain a valid formula of arithmetic logic.
For example, the assertion (2.6b) is obtained by the obvious substitutions
in the tautology = A A B = A. This relation between propositional logic
and the logic of arithmetic underlies much of the reasoning in proofs about
elementary algebra formulas.

Instead of having two separate logics, we modify arithmetic logic so it ex-
tends propositional logic in much the way that elementary algebra extends
arithmetic. We do this by adding Boolean-valued variables to arithmetic
logic. This means that we have two different kinds of variables: numeric-
valued and Boolean-valued. We’ll eliminate the “valued” and call then nu-
meric and Boolean variables. We call the resulting logic the propositional
logic of arithmetic.

In this logic, an interpretation assigns numbers to numeric variables and
Booleans to Boolean variables. I have adopted the convention of using lower-
case letters for numeric variables and upper-case ones for Boolean variables.
But this is just a convention, and in principle there are two different variables
that we call z. We can assume that those two variables are distinguishable
in some way—perhaps by being printed in different colors. Whenever we
use a variable it will be clear in which color it should be printed, so we don’t
bother coloring it. And of course, we’ll never use the same name with both
colors in the same formula. Later in this chapter, we’ll see that we don’t
need these two different kinds of variables. But in Chapter 3, when we start
using temporal logic, we’ll again need two different kinds of variables.

Having incorporated propositional logic into arithmetic logic, we don’t
have to “import” tautologies from propositional logic to reason about ele-
mentary algebra. Those tautologies have become tautologies of the propo-
sition logic of arithmetic. To use them, we extend the Elementary Algebra
Instantiation Rule to:

Propositional Logic of Arithmetic Instantiation Rule Substi-
tuting any numeric expressions for (some or all) numeric variables and
any formulas for (some or all) Boolean variables in a valid formula
yields a valid formula.

One propositional logic tautology often used in proofs is the transitivity of
=. Just as we write z < y < z as an abbreviation for (z < y) A (y < z), we
sometimes write A = B = C for (A = B) A (B = (). A nice way to write
a proof of A = @ is:

A = B Proofof A= B.
= C Proofof B= C.
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= () Proof of P = Q.

This works well if the proof of each implication is short. It’s my favorite way
of writing a lowest-level prose proof of a hierarchically structured proof.
Another useful tautology is

E(P= Q) = (PAN—-Q = FALSE)

This is the basis of a proof by contradiction, in which we prove that P implies
@ by assuming P and —(@ and obtaining a contradiction (which implies
FALSE). Many mathematicians dislike proofs by contradiction, which they
find inelegant. If you write a proof to make sure that what you're trying to
prove is true, then you should always write a proof by contradiction. It’s
never harder and can make it easier to write the proof. I like to view proofs
by contradiction in terms of this tautology:

=(P=Q =(Pr-Q=Q)

It shows that to prove P = @, we can assume not just P but also = () when
proving (). This gives us an additional hypothesis. Moreover, it’s a very
strong hypothesis. If P = @ is true, then P implies that =@ is equivalent
to FALSE, which is the strongest possible hypothesis (since FALSE implies
anything). If you wind up not using the additional hypothesis, you can just
delete it.

2.1.8.2 More About Proofs

Consider the theorem of Figure 2.1 of Section 2.1.4.1. As we saw in Sec-
tion 2.1.6, it makes an assertion of the form = T, for a formula T of arith-
metic logic containing the variables ¢ and y. To prove it, we had to prove
that T is true when any numbers are substituted for z and y. We do this by
assuming that z and y equal some unspecified numbers and showing that
T is true for those unspecified numbers. Expressed semantically, = T as-
serts that [T](T) is true for all interpretations Y. We prove this by proving
[TT(Y) is true for some particular unspecified interpretation Y. The goal
of the proof of
Theorem T
is to show that [T](Y) is true for the unspecified interpretation Y.

The formula 7T in our example is of the form A = P for formulas A and
P. Most of the theorems we prove have this form. The assertion = A = P
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means that [A = P](Y) is true for every interpretation Y, which is true
iff [P(Y) is true for every interpretation T for which [AJ(Y) is true. In
other words, we can prove = A = P by assuming that T is an arbitrary
interpretation such that [A](Y) is true and proving [P](Y) is true for that
interpretation. Writing

Theorem ASSUME: A
Prove: P

asserts that = A = P is true, but the goal of the proof is to show that
[P](Y) is true for an interpretation Y, assuming [A](Y) is true for that
interpretation. In other words, the goal of the proof is to show that P is
true when we can assume that A is true throughout the proof. Therefore,
the Q.E.D. step asserts that P is true (which completes the proof of A = P),
not that A = P is true.

In plain Mathglish, if the theorem asserts A = P, then the goal of the
proof is to prove A = P, with no additional assumption. If we write the
theorem as an ASSUME/PROVE, then the goal of the proof is to prove P,
using the assumption that A is true. Either way, we're proving the same
thing: = A = P.

In our example, formula A equals B A C'. Assuming that B A C is true
is the same as assuming that B is true and C is true. Writing B A C as
two separate assumptions allows us to give them each a number, so we can
indicate in the proof which of the two conjuncts is being used in proving
an individual step. This makes the proof easier to read. The goal P is
also a conjunction, but there is seldom any reason to number the individual
conjuncts of a goal.

The ASSUME/PROVE construct is not limited to the statement of the
theorem. It can be used as any step of a proof. The formulas in the ASSUME
clause as well as any assumptions in effect for that statement can be assumed
in the statement’s proof.

A formula P is often proved by showing that to prove P it suffices to
prove some other formula ), and then to prove ). If P is a statement in a
hierarchically structured proof, this proof can be written as:

23. P
231. Q=P
Proof of @ = P

2.3.2. Q
Proof of @

Remember
that iff means
if and only if.
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2.3.3. Q.E.D.
PRrOOF: By steps 2.3.1 and 2.3.2.

The problem with this structure is that the proof of (), which is likely to be
the main part of the proof of P, is one level deeper than the proof of P. (It
starts with statement 2.3.2.1.) That extra level of depth serves no purpose
and makes the proof harder to read. Instead, we write the proof of P like
this:

2.3. P
2.3.1. SUFFICES: @
Proof of P, assuming that @) is true.

2.3.2. ...

2.3.7. Q.E.D.
Proof that steps 2.3.2-2.3.6 prove Q.

Starting with step 2.3.2, the SUFFICES statement changes the goal of the
proof of step 2.3 from P to (). The proof of step 2.3.1 has P as its goal and
() as an additional assumption that can be used. In other words, the proof
of 2.3.1 is the same as if the statement were:

2.3.1. ASSUME: @)
ProveE: P

The SUFFICES construct can be used with ASSUME/PROVE too, as in:

2.3. P
2.3.1. SUFFICES: ASSUME: A
ProveE: @
Proof of P, assuming that A = @ is true.

In addition to changing the goal of the proof of step 2.3 from P to @, this
SUFFICES statement also adds A to the current assumptions of that proof.
The proof of 2.3.1 is then the same as the proof of:

2.3.1. ASSUME: A = @
ProOVE: P

If A is a conjunction, then its conjuncts can be listed and given numbers
in the ASSUME clause of a SUFFICES statement, the same as in an ordinary
ASsSUME/PROVE statement.
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A common proof strategy is to decompose a proof into cases. For exam-
ple, the proof that each step of Euclid’s algorithm maintains the truth of
GCD(z,y) = GCD(M, N) might be split into the three cases z > y, y > «z,
and ¢ = y. This is done with the CASE statement. If G is the current goal
of the proof, then the statement CASE A is an abbreviation of:

ASSUME: A PROVE: G

In a proof by case splitting, a sequence of CASE steps is followed by a Q.E.D.
step whose proof shows that the cases cover all possibilities.

We have now seen all the kinds of statements needed to write a proof,
except for one: a statement for making definitions local to the proof. It’s
described in Section 2.4.3.1.

2.1.9 Predicate Logic

Predicate logic is an extension of propositional logic. It includes the oper-
ators of propositional logic, and all propositional logic tautologies are valid
formulas of predicate logic. It extends propositional logic because the value
of a variable is not either TRUE or FALSE, but instead is a predicate on some
collection of values—the same collection for all variables. (Propositional
logic is equivalent to the special case in which that collection contains just
a single value.)

Predicate logic is normally described as adding to propositional logic
two additional operators called quantifiers. There is a third mathematical
operator that seems to be considered an add-on to predicate logic, if it is
considered at all, but that I consider part of the logic. It’s described after
the descriptions of the quantifiers.

We won’t bother studying predicate logic in general, just the special
case in which predicates are predicates on the set IR of real numbers. This
means that we will consider the logic obtained by adding the operators of
predicate logic to arithmetic logic—a logic we will call the predicate logic of
arithmetic. All the properties of this logic that don’t depend on the laws of
arithmetic are true of predicate logic in general.

2.1.9.1 Quantifiers
The symbols, names, and Mathglish pronunciations of quantifiers are:

V universal quantification  for all
J existential quantification there exists
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They have the following meanings, where v is any numeric variable and F'
is any formula of the predicate logic of arithmetic:

Vo : F is true iff F' is true when any number is substituted for v.

dov: F is true iff there is some number that, when substituted for v,
makes F' true.

To be a bit more precise, for any interpretation Y, let
T EXCEPT v 4 r

be the mapping that’s the same as T except it assigns to the variable v the
number r. For any interpretation Y:

[Vv: F](Y) equals TRUE iff [F](Y EXCEPT v < r) equals TRUE for
every number 7.

[Fv: F](Y) equals TRUE iff [F](Y EXCEPT v < r) equals TRUE for
some number 7.

When parsing a formula, the scope of a quantifier extends as far as possible—
for example, until terminated by the end of the formula or by a right paren-
thesis whose matching left parenthesis precedes the quantifier.

The following formula is an example of universal quantification:

(2.7) Yz : yxz? > 22

Since (i) 22 > 0 for any number z and (ii) y * r > r for all r > 0 iff y > 1,
this formula equals TRUE iff y > 1. Thus, (2.7) is equivalent to y > 1.

The following formula asserts that there exists a (real) number whose
square equals y:

(2.8) 3z : y =2?

Since a real number y has a square root (that’s a real number) iff y > 0,
this formula is equivalent to y > 0.
The two quantifiers are related by these theorems:

(29) E(Vv:F) = (=3v:~F) E@3v:F) = (=Vv:=F)

You should be able to check that they follow from the informal definitions
of V and 3. We can take either of these theorems to be the definition of one
of the quantifiers in terms of the other.

I like to consider Vv and 3 v to be the operators, and to consider V and
3 (and the colon “”) to be pieces of syntax. These two operators are dual
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to each other, meaning that to negate the application of either of them to a
formula F', we replace the operator by its dual and replace F by —F. This
duality is expressed by these theorems:

(2.10) E-(Vv:F) = (3v:F) E-(Fv:F)= (Vv :F)

They follow from (2.9) by negating both sides of its equivalence relations.

In formulas (2.7) and (2.8), = is called a bound variable. The variable z
doesn’t really occur in those predicates. If we replace z by another variable
z in (2.8), we get 32 : 22 = y— a formula that is not just equivalent to (2.8),
but is really just a different syntax for the same formula. When we call z
a bound variable of a formula, we are making a statement about syntax,
regarding the formula as a string of characters. The variables that really do
occur in a formula, like the variable y in (2.8), are called free variables and
are said to occur free in the formula.

We can write Vv or 3 v in a context in which v already has a meaning—
for example, in a formula of the following form, where F, G, and H are
formulas:

(2.11) Yov : (FA(3v : G)ANH)

An occurrence of v in formula F or formula H and an occurrence of v in
formula G mean different things. We can say that the meaning of v is
changed within the scope of the 3 v operator. However, it’s easier to think

(1]

of there being two different variables that, for convenience, we write as “v”.
Imagine that every time we introduce a variable that’s written as “v”, we’re
actually introducing a brand-new variable that we’ve never used before. If
we’ve already used 142 different variables written as “v”, then (2.11) should

really be written:
V143 : (F/\ (E!’U144 : G) A H)

But we'’re lazy, so we abbreviate it as (2.11). We should never explicitly
write a formula such as (2.11), but we’ll see that such formulas can arise
implicitly. So, we have to remember that those unwritten subscripts are
there. (In fact, when a program parses (2.11), it would probably represent
v143 and v144 by two different variable objects that have a name field with
value “v”.)

2.1.9.2 A Subtlety Explained

The theorems in (2.9) and (2.10) are different from propositional logic tau-
tologies in a subtle way. We apply a tautology like = (F A G) = (G A F)
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by substituting formulas for F' and G to get a theorem. We can’t substitute
a formula for F in (2.9) or (2.10) to get a useful theorem. As an example,
suppose we want to substitute v > y for F' in the first theorem of (2.9).
That theorem is really something like:

(2.12) | (Vvi3: F) = (-3Jvg:F)

The v in the formula v > y also has some subscript, depending on where
that formula comes from—perhaps it’s vg4. Then the substitution produces
something like:

(2.13) }: (V V13 : Vg4 > y37) = (—|E| V14 : —\(’1)64 > y37))

If a variable z does not appear in a formula G, then Vz: G and dz: G are
both equivalent to G. So, (2.13) is equivalent to

= (vea > y37) = ——(vea > ysr)

This is valid, but it’s not the theorem we wanted.

One possible approach is to say that when substituting for F' in the
scope of a quantifier like V v13, any variable named v is replaced by v13.
Substituting vge > y37 for F in (2.12) then yields

E (Voiz:viz > ys37) = (03 va:~(via > ysr))

which is the theorem we want. However, we’ll see in Section 2.4.1.1 that this
kind of substitution is not sound, allowing the deduction of false theorems.

The correct approach is that we don’t just substitute for F' when it
appears in theorems like (2.9), but for the bound variable v as well. In
addition to substituting the formula vgs > w37 for F, we substitute the
variables vg4 for both v13 and v14 to get

(2.14) }: (V Vg4 - Vs > y37) = (—|E| V64 - —\(’1)64 > y37))

Of course, this is also what we want to do if vgqs were z46 or any other
variable.

This all works, and it’s quite natural to substitute for the variable v
when applying theorems (2.9), since it’s unlikely that the we will want to
apply them to formulas whose bound variable happens to be named v. But
I find it somewhat inelegant, and inelegance bothers me because I worry
that it might indicate a potential problem. Fortunately, there’s another way
of viewing quantification which I find more elegant that justifies what we’re
doing.
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The alternative view is to interpret V v : F' with its formula F' as a formula
V (F') with no bound variable, where F' is not a formula but a mapping. The
formula Vv :v > y is viewed as the formula V (M), where M is the mapping
defined by M (v) 2 v > y. If we write this mapping M as v — v > y, then
we see that Vv :v > y is way of writing V (v — v > y). The theorem (2.12)
becomes =V (F) = =3 (—~F), where F' is a mapping and —F' is the mapping
defined by (—F)(v) = —F(v) for all values v. Substituting ves — ves > yar
for F in EV (F)=—-3(—F) yields:

=V (ves = vea > y37) = —3((ves — (ves > y37)))

Using the definition of —F for a mapping F to write —(ves > ...) as
Vg4 — ..., this theorem is what we usually write as (2.14). This view
shows that replacing the bound variables v of (2.12) by the v in the formula
that is substituted for F' is the natural thing to do.

We will use the standard notation for quantifiers. However, I find that
this alternative view helps us understand what we’re doing.

2.1.9.3 Predicate Logic Reasoning

Reasoning about formulas of the predicate logic of arithmetic requires rules
of predicate logic. The predicate logic tautologies (2.9) and (2.10) provide
such rules. Two more tautologies are

(215) E(Vv: FAG) = (Vv : F) A (Vv : G))
E@3v: FVG) = (Bv: F)v (3v: Q)

You should be able to find examples to show that these assertions become
false if V and 3 are interchanged. Another simple but useful rule is that if the
variable v does not occur free in formula F', then Vv : F and dv : F' are both
equivalent to F'. For example, if v does not occur free in F', then the first
theorem of (2.15) implies that Vv : (F A G) is equivalent to FF A (Vv : G).

There are four more rules that are often used. Two of them are for
proving the two kinds of quantified formulas, the other two are for using each
kind of quantified formula to prove something else. The first two are called
quantifier introduction rules, the second two are called quantifier elimination
rules. The first uses a new kind of assumption in a proof. The others
are simple implications, which can be proved with an ASSUME/PROVE as
described in Section 2.1.8.2.
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V Introduction To prove Vv : F, we need to show that F' is true for any
value of v. We do that by proving F' under the assumption that v is a brand
new variable about which we know nothing. The following ASSUME/PROVE
in a theorem or in a proof statement is equivalent to the formula Vv : F'.

ASSUME: NEW v
ProvE: F

However, its proof has F' as its goal, and the variable v in F and in any
formulas in the proof is regarded as a new variable, unrelated to any occur-
rence of v in formulas outside the proof. We could write a proof of Vv : F
like this:

3.2. Vv : F
3.2.1. SUFFICES: ASSUME: NEW v
PrROVE: F
PRrROOF: Obvious (because the ASSUME/PROVE asserts Vv : F).

3.2.7. Q.E.D.
Proof that steps 3.2.2-3.2.6 imply F.

We could also eliminate one level of proof and the SUFFICES step by having
step 3.2 simply assert the ASSUME/PROVE.

d Imtroduction To prove dv: F, we have to show that there is a value of
v that makes F' true. We do that by explicitly describing that value. That
is what this tautology asserts, where exp is a numeric expression:

= (F WITH v <= ezp) = Jv : F

V Elimination The formula Vv : F asserts that F is true for all values
of v. We deduce from this formula that F is true when we substitute a
particular expression for v. That is asserted for the numeric expression exp
by:

= (Vv : F) = (F WITH v < ezp)

We then use the formula F WITH v < exp to prove our goal.
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3 Elimination Suppose Jv: F' is true and F' = G is true when v has any
value. This implies that G is true for the particular value of v that makes
F true, so dv: G is true. Thus, we have the following rule:

EF=G implies FE((Jv:F)=3v:G)

This doesn’t look like an 3 elimination rule because we use v : F' to prove
another existentially quantified formula 3 v : G, so we haven’t eliminated the
3. It becomes an elimination rule if v does not occur free in G, so Jv: G
equals G. (The rule is usually stated with Jv: G replaced by G and the
side condition that v does not occur free in G.)

We must be careful when using the WITH constructs in these rules.
If F is the formula (v >0)=3Jv:(G, then F WITH v < ezp equals
(exp > 0) = Jv:G. No substitution is performed in G because, within
G, the bound variable v is not the same variable as the v in v > 0.

2.1.9.4 The cHOOSE Operator

Mathematicians often define something in terms of its properties. For exam-
ple, they might define /7 for a real number r to be the positive real number
such that (y/7)?> = r. We can express such a definition using an operator
invented by the mathematician David Hilbert in the 1920s. I didn’t learn
about this operator until about 25 years after I completed my studies; I
suspect it’s still unknown to most mathematicians. Hilbert called it e, but
I think it’s better to call it CHOOSE. We can use this operator to define the
square root as follows (since we are assuming all predicates are predicates
on R):

VT = CHOOSE 5 : (5 >0) A (s2=1)

In general, the expression CHOOSE v: P equals a value e that makes P
true when e is substituted for v. If there is no such e, then the value of
the expression is unspecified. If there is more than one such value e, then
the expression can equal any one of those values. For example, define the
mapping ASqrt by:

ASqrt(r) = CHOOSE s : s> =1

Then ASqrt(4) might equal 2 and ASqgrt(9) might equal —3. Since this is
math, = ASqrt(4) = ASqrt(4) is true. The value of ASgrt(4) may be 2 or
—2. But whichever value it equals, like every mathematical expression with
no free variable, it always equals the same value.



CHAPTER 2. ORDINARY MATH 43

Formally, CHOOSE is defined by the following axioms:

(2.16) (a) =(3v : P) = (P WITH v < (CHOOSE v : P))
(b) E(Vv: P=@Q) = ((CHOOSE v : P) = (CHOOSE v : Q))

If there is more than one value of z for which P equals TRUE, then
CHOOSE z : P can equal any of those values. But it always equals the same
value.

No matter how often I repeat that the CHOOSE operator always chooses
the same value, there are engineers who think that CHOOSE is nondeter-
ministic, possibly choosing a different value each time it’s evaluated, and
they try to use it to describe nondeterminism in a program. I've also heard
computer scientists talk about “nondeterministic functions”.? There’s no
such thing. There’s no nondeterminism in mathematics. Nondeterminism
is important in concurrent programs, and we’ll see that it’s easy to describe
mathematically. Adding nondeterminism to math for describing nondeter-
minism in a program makes as much sense as adding water to math for
describing fluid dynamics.

An expression CHOOSE v : P is most often used when there is only a single
choice of v that makes P true, as in the definition of \/r above. Sometimes,
it appears within an expression whose value doesn’t depend on which value
of v satisfying P is chosen.

2.1.10 More About Proofs
2.1.10.1 Assume/Prove in General

We have seen two kinds of ASSUME/PROVE constructs: one in which the
ASSUME clause contains one or more assumptions, and one in which it con-
tains just a NEW declaration. We now examine the precise meaning of this
construct.

The statement of the theorem of Figure 2.1 has the form:

(2.17) AssuME: A, B PROVE P

for formulas A, B, and P. (The numbers attached to A and B are just
labels that don’t affect the meaning.) This statement asserts the formula
ANB = P. You can check that the following is a tautology of propositional
logic:

= (AANB=P) = (A= (B = P))

2T must confess that, many years ago, I used that term in a paper [28].
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We can therefore rewrite the formula asserted by (2.17) as A = (B = P).
Multiple applications of the tautology show that AN BACAD = P is
equivalent to A = (B = (C = (D = P))), and so on for any number of
conjuncts.

In general, an ASSUME clause is a comma-separated list of assumptions,
each of which is either a formula or a NEW declaration. Recall that the
statement

ASSUME: NEW v PROVE: P
makes the assertion Vv : P. The statement
(2.18) AssuME: A, B, NEW v, C, D PROVE P
asserts the formula

A= (B= (Yv:C= (D= P)))

The proof of the ASSUME/PROVE statement has P as the goal, and the
variable v is regarded in the formulas C, D, and P and in any formulas in
the proof as a new variable, unrelated to any occurrence of v in A and B
and in formulas outside the statement and its proof.

The variable v introduced by NEW wv is really a brand new variable, which
we think of as having a new unwritten subscript. If A or B has a free variable
v97, then the NEW v might be v3s. A free variable v in any formula in the
proof of P would be vgy. This would make it almost impossible to use A or
B in the proof if it contained a variable named v. In general, it’s a bad idea
to introduce a new variable in a context in which a variable with the same
name (and a different subscript) has a meaning.

As should be clear from the example, the general form of an ASSUME/
PROVE statement is

ASSUME: A1,..., A, PROVE: P

where each A; is either a formula or a NEW declaration. This statement
asserts the formula

Bi...B, P)..)

where B; is “A; = (7 if A; is a formula and is “(Vv:” if 4; is NEW v.
There can be more than one NEW declaration among the A;. If « is a list
of assumptions and P is a formula, we define AP(«, P) to be the formula
asserted by the statement ASSUME: o PROVE: P. If « is the empty list, we
define AP(«, P) to equal P.
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2.1.10.2 Hierarchically Structured Proofs

We now define the precise meaning of a hierarchically structured proof. Let
a statement be either the statement of the theorem or a statement in the
theorem’s proof. For each statement and each lowest-level paragraph proof,
we define a current goal G and a list 8 of current assumptions that can be
used to prove that goal. For a proof consisting of a list of statements, we
consider the current goal and list of assumptions of the first statement of
the proof to be the goal and assumptions of the proof.

We recursively define the list of assumptions and the current goal for
every statement and paragraph proof in the theorem’s proof as follows. We
first define them for the theorem. We then define, for every statement, the
goal and list of assumptions for the statement’s proof and, except for the
theorem or a Q.E.D. statement, we also define the goal and list of assump-
tions for the next statement at the same level. (The next statement at the
same level as step number 1.2.3 is step number 1.2.4.) We use the notation
that if 8 and « are lists of assumptions, then [, « is the obvious concate-
nation of the two lists. If P is a formula, then 3, P is the list obtained by
appending formula P to the end of 3.

We can consider a formula P that is a statement or in a SUFFICES: P
statement to be an ASSUME/PROVE with an empty list of assumptions.
There are then three kinds of proof statements, where a is a (possibly empty)
list of assumptions and P is a formula:

PS1. ASSUME: o PROVE: P
PS2. SUFFICES: ASSUME: @ PROVE: P

PS3. Q.E.D.

We now define the goal and list of assumptions for all statements and para-
graph proofs, starting with the theorem. The list of assumptions that can
be used to prove the theorem is the list of all formulas that have already
been proved or are taken as axioms, along with NEW v assumptions for any
variables v that have been introduced—usually implicitly. For example, z
and y are such variables in the theorem of Figure 2.1. To simplify the defini-
tion, we define the current goal where the theorem is stated to equal FALSE.
The statement of the theorem must be a formula of type PS1. Here are
the inductive definitions for the three kinds of statements, where 3 is the
current list of assumptions and G is the current goal at the statement.

PS1. At the beginning of its proof, the current list of assumptions is j3, «,
and the current goal is PV G. (Why that’'s P V G and not P is
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explained below.) At the next statement, the list of assumptions is
B, AP(«a, P) and the current goal is G.

PS2. At the beginning of the proof, the current list of assumptions is
B, AP(a, P) and the current goal is G. At the next statement, the
list of assumptions is 3, « and the current goal is P V G.

PS3. At the beginning of the proof, the current list of assumptions is § and
the current goal is G. (There is no next statement.)

In PS1 and PS2, you probably expected that the stated goals PV G should
have been P. In fact, P is what is usually proved. However, we can take
PV @ as the goal because the statement that introduces the new goal P lies
within a proof of G. If we prove G instead of P, then the rest of the current
proof is irrelevant because its purpose is to prove G. Another way to look
at it is that we are actually performing a proof by contradiction by adding
=G as an assumption. If we prove G, then the assumption =G allows us to
deduce FALSE, which implies the goal P.

The lowest-level steps of a proof have a paragraph proof that mentions
all the previous steps needed to prove the step. However, not all previous
steps can be used to prove a step. Every step is proved under a list of
assumptions, and we know it to be true only if those assumptions hold.
Suppose S is the current step and T is a previous step, and suppose [ is
the list of current assumptions under which S is being proved and « is the
list of assumptions under which 7 has been proved. For T to be used in
the proof of S, it must be true under the assumptions of 8. Since it was
proved under the assumptions of «, we ensure this by requiring that all the
assumptions in o must be in 5.

Let’s suppose for a moment that the proof contains no assumptions in
any of the statements of form PS1 or PS2, so all steps in the proof were
proved under the same list of assumptions. We could then use any previous
statement in the proof of a statement. The proof of step 4.3. could use
step 1.1.7.4.5. However, if we allowed that, we would lose the benefit of
hierarchical structuring. Hierarchical structuring simplifies understanding
because once we’ve finished proving statements 1, 2, and 3, we can forget
about any statements in their proofs when proving statement 4. We just
need to understand those three statements. And similarly, when proving
statement 4.3, we should not care about the proofs of statements 4.1 and
4.2; we just need to understand statements 1, 2, 3, 4.1, and 4.2. Changes
to the proofs of those five statements should make no difference, as long as
the statements don’t change.
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Now suppose there can be assumptions in ASSUMEs. The lists of assump-
tions under which each of the statements 1, 2, 3, 4.1, and 4.2 were proved
are each a prefix of the list of assumptions under which every paragraph
proof in the proof of 4.3 is proved. (A list is considered a prefix of the same
list.) Respecting the hierarchical structure ensures that only steps that logic
allows to be used in a proof can be used. The rule for what statements can
then be used in a paragraph proof is:

Step Reference Rule A step in a level-n proof can be used only in
the proofs of the steps that follow it in the same level-n proof.

For example, step 6.2.7.3 can be used only in the proofs of steps 6.2.7.4,
6.2.7.5, etc.

This rule allows us to solve the problem of keeping track of long step
numbers. Step number 6.2.7.3, 6.2.7.4, etc. can be replaced by the numbers
(4)3, (4)4, etc., where step (n)i is the i*? step of a level-n proof. There can
be many steps numbered (4)3 in a proof. However, in any paragraph proof,
there is at most one step numbered (4)3 that the Step Reference Rule allows
to be used. That step, if it exists, is the most recent step numbered (4)3.

2.1.11 Some Useful Notation
Here are two pieces of notation that mathematicians don’t seem to need,
but that I find essential for writing formulas that describe programs.

2.1.11.1 IF/THEN/ELSE

A programmer who read enough math would notice that mathematicians
lack anything corresponding to the if /then/else statement of coding lan-
guages. Instead, they use either prose or a very awkward typographical
convention. We let the expression

IF P THEN e ELSE f
equal e if the predicate P is true and f if P is false. It is defined by:

(2.19) IF P THEN e ELSE f =
CHOOSE v : (PA(v=c¢))V (mPA(v=f))

While it’s inspired by the if /then/else coding language statement, you
should not think of an IF/THEN/ELSE expression as instructions for com-
puting something. It is a mathematical expression defined by (2.19). It’s
more like the expression written in the C language and its descendants as
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P?e:f. However, coding languages usually specify the order in which the
expressions P, e, and f are evaluated. Although we sometimes say that
evaluating an expression exp yields a value v, that just means exp = v.
Formally, there is no concept of evaluation in mathematics.

2.1.11.2 Conjunction and Disjunction Lists

Abstract mathematical descriptions of real systems can be quite long. Def-
initions are used to decompose them into shorter formulas that are easier
to understand. However, those shorter formulas can still be a few dozen
lines long. They are understandable because mathematical formulas have
a natural hierarchical structure. To take full advantage of that structure,
we use a simple bit of notation that mathematicians and many computer
scientists find heretical, but that engineers appreciate.

There are two simple ideas: a list of formulas bulleted by A or V rep-
resents the conjunction or disjunction, respectively, of those formulas; and

indentation is used to replace parentheses. For example, if A, B, ..., J are
formulas, then:
AV AANB ( (AAB)
v C v C )
ND=FE equals N (D= E)
AV 3dz: F AN( (3z:F)
VAG=H vV ( (G=H)
ANJ AN J ) )

Note how the implicit parentheses in the bulleted lists delimit the scope of
the = and dz operators in this formula.

Making indentation significant is a feature of the currently popular Python
coding language, but it works even better in this notation because the use
of A and V as “bullets” makes the logical structure easier to see.

2.2 Sets

You’ve probably come across the mathematical concept of a set. A set is
a collection. However, we will see that not all collections can be sets. The
fundamental operator in terms of which sets are defined is €, which is read is
an element of or simply in. For every collection S that is a set, the formula
erp € S equals TRUE iff the value of the expression exp is one of the things
the collection S is a collection of. We call the things in a set S the elements
of S.
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We need to be able to have sets of sets—that is, sets whose elements are
sets. Therefore, a set has to be a “thing”. So, we need to know what kinds
of things there are besides sets. The simplest way I know to make the math
we need completely rigorous is to base it on what is called ZF set theory or
simply ZF, where Z and F stand for the mathematicians Ernst Zermelo and
Abraham Fraenkel. One thing that makes ZF simple is that every thing is
a set. In other words, every mathematical value is a set. We will use ZF to
describe our math, so the terms set and value will mean exactly the same
thing. Sometimes I will write set/value instead of set or value to remind you
that the two words are synonyms. We add to ZF the operators of predicate
logic, so we should say we’re using the predicate logic of ZF, but we won’t.
We'll just call it ZF.

Logicians have shown how to build mathematics, including the set of real
numbers, from ZF. There’s no need for us to do that; we just assume the
real numbers exist and the arithmetic operators on them satisfy the usual
properties. This means that 42 and /2 are sets, but we don’t specify what
their elements are. We know that v/2 € 42 equals either TRUE or FALSE,
but we don’t know which. We assume nothing about what the elements of
the set 42 are. We’ll generally use the term wvalue for a set/value like 42 for
which we don’t know what its elements are.

We define the semantics of ZF the same way we defined the semantics
of the predicate logic of arithmetic. The meaning [F] of a formula F of ZF
is a predicate on (the collection of) interpretations, where an interpretation
is an assignment of a set to each variable. There is one difference between
the predicate logic of arithmetic and ZF: We defined the predicate logic
of arithmetic to have two kinds of variables, numeric-valued and Boolean-
valued. ZF has just set-valued variables. In ZF, the values TRUE and FALSE
are sets.> (We don’t know what their elements are.)

Including the operators of arithmetic in ZF implies that we have to
say what the meaning of the expression x + y is if z or y is a set that
isn’t a number. It also implies that we can write weird expressions like
(z+y) Az, so we have to explain what they mean. We’ll deal with this issue
in Section 2.2.7.

2.2.1 Simple Operators on Sets

A set S is completely specified by what its elements are—that is, by the
values of the formula e € § for all sets e. This is asserted by the following

3 As usually defined, ZF does not consider TRUE and FALSE to be sets. We will see that
making them sets allows the value of a program variable to be a Boolean.
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axiom of ZF:
E(S=T) =Ve:(ecS)=(ecT)

Besides equality, set theory has one Boolean-valued operator: the subset
operator C. For sets S and T, the formula S C T, read S is a subset of T,
is true iff every element of S is an element of 7. The precise definition is

SCT =2 Ve:(ecS)=(ecT)
We say that S is a proper subset of T iff S C T and S # T.

To define a set, we must define what its elements are. The most direct
way to do this is by enumerating the elements. If e, ..., e, are any values,
then they are the (only) elements of the set {ej,..., ey }. This set need not
have n elements. For example, the set {3, v/2, 3, 2+1, 42, 3} contains only
the three elements v/2, 3, and 42. It is equal to the set {42,42,3,/2}. (It is
as silly to say that a set has two copies of the number 42 as it is to say that
a football team has two copies of one of its players.) For n = 0, this defines
{} to be the empty set, which has no elements. For a finite set S (one with
only finitely many elements), we let #(S5) be the number of elements of S.
For example, #({1,2,4,2,1}) = 3.

Another way to define a set S is to define what e € S equals, for a variable
e. We do this by writing a formula and asserting that e € S equals that
formula. Here are the names, descriptions, and definitions of the set-valued
operators U, N, and \ (sometimes written “—” by computer scientists):

SN T (intersection) The set of all elements in both S and 7'
Definition: F e€e SNT = (e€ S)A(ee T)

SUT (union) The set of all elements in S or T.
Definition: = e SUT = (e€ S)V(ee T)

S\ T (set difference) The set of all elements in S and not in T'.
Definition: | e€ S\ T = (e€ S)A—(ee T)

Our definition of SN T is not just a definition. Besides defining SN T to be
the collection of values that are in both § and T, it asserts that if S and T
are sets, then this collection is also a set. The same is true of the definitions
of U and \ and all the other set-forming operators to be defined. Some
of those set-forming operators can be defined in terms of others. For the
rest, the assertion that they form a set is an axiom. We don’t care which
operators are which, but we should be aware that each such definition is
making an assertion that some value is a set.
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2.2.2 More Sets and Set Operators

We’ve defined the set IR of all real numbers. Most sets of numbers manip-
ulated by programs are sets of integers. Here are definitions of some sets of
integers that we will use.

IN The set of natural numbers, which consists of all the non-negative inte-
gers 0, 1, 2, etc.

I The set of all integers, which includes positive and negative integers
and 0.

m..n If m and n are integers, then this is the set of all integers ¢ such that
m < i < n. This means that if m > n, then m..n is the empty set {}.

We will need two more operators on sets. Even if you've studied sets,
you may not be familiar with them:

P(S) (power set) The set of all subsets of S. For example P({1,2,3}) equals

{{H A1 {2535 {1, 21, {1, 3}, {2,3},{1,2,3} }.
Definition: = e P(S) = eCS.

US The union of all the elements of S. For example, U{T, Uu,vi =
TUUUYV.
Definition: = e€| JS = Ise€S:e€s

These operators can be confusing, and when using them it can be hard to
keep track of exactly what kind of elements belong to each set. Figuring out
why the following two assertions are true may help you understand them.

~UPs) =5 EScPUs)

The definitions imply that P({}) equals {{}}, the set whose single element
is the empty set, and | {} equals {}.

2.2.3 Two Set Constructors

ZF has the following two set-forming constructs. I don’t think they have
names that are used by most mathematicians, so I have chosen these names:

Subsetting {v € S : P} is the subset of the set S consisting of all ele-
ments v in S for which formula P is true. For example, i..j equals
{nel:i<n<j}

Definition: F e€{ve S : P} = (e€ S)A(P WITH v <+ e)
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Imaging {ezp : v € S} is the set of all values of the expression
erp obtained by substituting for v an element of S. For example,
{2%n+1:n €N} is the set of all odd natural numbers.

Definition: = e € {exp : v€ S} = v : (v e S)A(e= exp)

These constructs introduce a bound variable, which is named v in the defi-
nitions and n in the examples. Like the bound variables of predicate logic,
these bound variables have no relation to variables of the same name that
might appear elsewhere, and they don’t really occur in the expressions.

As with quantifiers, there is an alternative view of these constructs that
doesn’t involve bound variables. For example, we view the imaging con-
struct {exp:v € S} for an expression exp as Imaging(ezxp, S), where exp is
a mapping. We view {2*xn+1:n € IN} as Imaging(n — 2% n + 1, IN).
I chose the name Imaging for this construct because {2 n + 1:n € IN} is
the set that mathematicians call the image of the set IN under the mapping
n—2xn+1.

This view of the imaging construct and the similar view of the subsetting
construct shows that the scope of the bound variable v in these constructs is
the expression exp. It does not include the expression S. For example, the
expression {v : v € {v}} is really something like {v32: v32 € {vi2}}. If all
three of the variables named v were the same variable, then this expression
would equal the set of all sets, which we’ll see in Section 2.2.6.3 would make
the definition unsound because there can’t be such a set.

2.2.4 Venn Diagrams

The operators N, U, C, and = satisfy the same properties as the operators
A, V, =, and = of propositional logic. If a propositional logic tautology
contains only these four operators, then substituting N for A, U for Vv, C for
=, and = for = yields a theorem of set theory. Thus C is transitive; and
N and U are commutative and associative and satisfy these distributivity
properties:

= SU(TNU) = (SUT)N(SUT)
= SN(TUU) = (SNT)U(SNT)

Moreover, if all the sets are subsets of a set W, then a propositional logic
tautology containing — becomes a theorem of set theory when, in addition
to substituting operators of set theory for propositional logic operators, each
subexpression =S is replaced with W'\ S.
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This correspondence between theorems of propositional logic and set
theory is the result of a close connection between predicates and sets. For a
set W, there is a natural 1-1 correspondence between predicates on W and
subsets of W. The predicate P and the corresponding set Sp are related as
follows:

= {veW: Pv)} P(v) = (veSp)

Suppose that instead of letting a value be a ZF set, we let a value be any
element of W and we let a set be any subset of W. The meaning [F] of a
predicate logic formula F' would then be a predicate on W. Define F to be
the subset of W that corresponds to [F], so

F 2 [veW : [F]()

The following calculation shows that = F A G = FNG:

>
)
|

NG = {veW: [FAG])} by definition of ~..
= {veW: [F](v)AN[G](v)} by the meaning of A
= {veW: [F](v)} Nn{ve W:[G](v)} by definition of N

- FnG by definition of ..

Similar calculations show

=FVG =FUG =
FF=G=(F=0G) F

CG)

| /“QH

F=
-F = W\F

If we take W to be the set of points in a plane, then subsets of W can
be represented by pictures. When used to illustrate predicate logic, such
pictures are called Venn diagrams. For example, if predicate symbols F' and
G are represented by sets of shaded points describing F and G, then F A G
is represented by the points of F N G, where F and G overlap. You can
find on the Web numerous explanations of the operators of propositional
logic using Venn diagrams. Those diagrams provide a good way to become
familiar with propositional logic.

2.2.5 Bounded Quantification

In ZF, the formula Vov: F asserts that F is true when any set/value is
substituted for v. We usually want to assert only that a formula F' is true
for all values of v in some set S. This assertion is written Vv € §: F. A
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similar notation applies to 3 and to the CHOOSE operator. The definitions
of these operators are:

A

el

(2.20) Yve S: F Vv:(veS)=F
JveS:F Jv:(velS)ANF
CHOOSE v € S: F = CHOOSE v:(veES) A F

We can view Vv € S and dv € S as operators that are the duals of each
other. This means that the following assertions are true:

(221) E-(VveS:F) = (FveS:F)
E-(JuveS:F) = (Vve §S:=F)

You should convince yourself that they follow from the intuitive meanings of
Vv e Sand Jv € S. It’s a good exercise to derive them from the definitions
(2.20), the duality of V v and 3 v expressed in (2.10), and propositional logic.
You should also convince yourself of these properties of quantification over
the empty set {}:

= (Vve{}: F) = TRUE = (Jve{}: F) = FALSE

Some obvious abbreviations are used for nested V and nested 3 expres-
sions. For example, Vv € S:(Vw € T: F)is written Vv € S,w € T : F and
Voe S weS:Fiswritten Vv, w € S: F. Definitions (2.20) imply:

ENMov,weS:F) = VwveS:F)
E@v,weS:F) = 3w,veS:F)

There are no such abbreviations for CHOOSE. (It’s not clear what they would
mean. )

The definitions (2.20) imply that the set S lies within the scope of the
bound variable v. However, formulas in which v occurs in S are weird. I've
never written one, so they don’t appear in this book and are not allowed in
TLA™.

If S is a finite set containing nm elements, then Vv € §: F equals the
conjunction of n formulas, each obtained by substituting an element of S
for v in F. Similarly, 3v € S : F' equals the disjunction of those n formulas.
If S is an infinite set, we can think of Vv € §: F and Jv € §: F as the
conjunction and disjunction of the infinitely many formulas obtained by
substituting elements of S for v in F. When we say that a formula is a
conjunction or disjunction, we sometimes include the case when it is such
an infinite conjunction or disjunction. It should be clear from the context
when we’re doing this.
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The rules for reasoning about unbounded quantifiers and unbounded
CHOOSE can be applied to the bounded versions of these operators by using
the bounded operators’ definitions. For example, consider the V introduc-
tion rule of Section 2.1.9.3. We prove Vv € §: F by applying the rule to
Vv:(v € S)= F, which means proving:

ASSUME: NEW v, v € § PROVE: F

Since it occurs frequently, we abbreviate NEW v, v € § as NEW v € § and
write this as:

ASSUME: NEWv € S PROVE: F

Applying axioms (2.16) to the definition of bounded CHOOSE, using the
tautology = (RA (P =Q))= (RAP=RAQ), proves:

(a) E@QvesS:P) =

(PA(velS) WITH v < (CHOOSE v € S : P))
(b) ENVveS: P=Q) =

((CHOOSE v € § : P) = (CHOOSE v € § : Q))

2.2.6 Infinite Sets and Collections
2.2.6.1 Infinite Sets

In an abstract program, the value of a variable might assume any value in
an infinite set of possible values. I suspect most people think infinite sets
make math more complicated. They’re wrong. Math uses infinite sets to
make things simpler. One reason coding languages are complicated is they
require you to do arithmetic with a finite set of numbers, rather than the
infinite set of numbers you used as a child. The simple rules of arithmetic
you learned as a child, such as

(z+y)+z =12+ (y+2)

aren’t valid for arithmetic with a finite set of integers.

Infinite sets are needed to make math simple, but they have properties
that you may find surprising. An amusing example is called Hilbert’s hotel,
which is a hotel with an infinite set of rooms numbered 1, 2, 3, etc. Even
when Hilbert’s hotel is full, there is room for another guest. When a new
guest arrives, we just move all guests from their room numbered % to the
room numbered ¢ 4 1, and we give the new guest room number 1.
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We say that two finite sets are the same size iff they have the same
number of elements. Equivalently, they are the same size iff we can find
a 1-1 correspondence between their elements. For example, here is a 1-1
correspondence between the sets 0..4 and {2,5,8,12,17} that shows they
have the same number of elements.

0..4: 01 2 3 4

1111 ¢

{2,5,8,12,17} : 2 5 8 12 17

We can extend the concept of size of a set to infinite sets by defining any
two sets to have the same size iff there exists a 1-1 correspondence between
them. One difference between infinite and finite sets is that an infinite set
can be the same size as a proper subset of itself. Hilbert’s hotel illustrates
that adding one element to an infinite set doesn’t change its size. Here is a
1-1 correspondence showing that the set of integers is the same size as the
set of natural numbers:

I: 01 -1 2 -2 3 -3 4 —4
T
N: 01 2 3 4 5 6 7 8

We say that a set S is smaller than a set T iff S is the same size as a subset
of T, but T is not the same size as a subset of S. In the 19" century, Georg
Cantor upset many mathematicians by showing that the set of integers is
smaller than the set of real numbers. He also showed that P(S) is bigger
than S, for every set S. A theorem of ZF called the Schréder-Bernstein
Theorem states that if S and T each is the same size as a subset of the
other, then S and T are the same size. The definition of size and this
theorem generalize to arbitrary collections.

A set is called countable iff it is either finite or has the same number of
elements as IN (and hence the same number of elements as I). No infinite
set is smaller than IN, so countably infinite sets are the smallest infinite sets.
The following theorem asserts that a countable union of countable sets is a
countable set.

Theorem 2.1 If T is a countable set and every element of T is a countable
set, then U T is countable.

PROOF SKETCH: First, assume T and all its elements are infinite sets. Since
T is countable, we can enumerate its elements as A, B, C, D, etc. Since all
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of these sets are countable, we can list their elements as:

= {ao, ai, a2, as, a4, }
= {bo, b1, ba, b3, ba, ...}

= {Co, C1, C2, C3, C4, }
= {do, d1, do, ds, dy4, ...}

QW
|

Here is the required 1-1 correspondence. (The elements of AU B U... are
grouped to make the pattern clearer.)

N: 0 1 2 3 4 5 6 7 8 9
rtr1r1 111ttt

AUBUCUDU...: 0, a1 boHCLQ by Co, a3 by doJ

If T or any of its elements are finite, we can add elements to them to
make them all countably infinite, so we have proved that T is a subset of a
countable set. Since IN is the smallest infinite set, any subset of a countable
set is countable. END PROOF SKETCH

2.2.6.2 Mathematical Induction

Any natural numbers n can be written as (...(0+1) 4+ 1) +...) + 1, where
there are n ones. This means that we can prove Vn € IN : F' by proving two
things:

1. F is true when we substitute 0 for n.
2. If F is true, then it is true when we substitute n + 1 for n.

Such a proof is called a proof by mathematical induction. We can write
these two proof steps as:

1. F WITH n < 0

2. AsSSUME: NEW n € IN, F
PROVE: F WITHn <+ n+1

A little thought shows that we can strengthen the assumption in step 2 to
assert not just that F' is true for n, but that F' is true when any number in
0..n is substituted for n. In other words, we can replace step 2 by:

2. ASSUME: NEW n €N, VmeO0..n : FF WITH n < m
PrROVE: F WITH n < n—+1
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This proof is sometimes called a proof by generalized mathematical induc-
tion. We can combine these two steps into one by observing that 0..(—1) is
the empty set, soVn € 0..(—1): F equals TRUE. This observation and a lit-
tle thought shows that generalized mathematical induction can be expressed
as proving:

ASSUME: NEW n € N, Vme€0..(n—1): FF WITH n < m
ProvVE: F

Combining the two steps into one saves no work because the proof will be
broken into the two cases n = 0 and n > 0, which are the same as the two
steps. However, because 0..(n — 1) is the set of natural numbers less than
n, we can rewrite this statement as:

(2.22) AsSUME: NEW n € IN,
Vme{ielN:n>i}: F WITH n < m
PrOVE: F

Writing induction like this provides a new way of thinking about it. Instead
of starting from 0 and going up to bigger numbers, we think of starting
from an arbitrary number n and going down to smaller numbers. That is,
to prove F is true for n, we assume it’s true for numbers m smaller than
n. We can then prove F is true for each of those numbers m by assuming
its true for numbers p smaller than m. And so on. We can’t keep finding
smaller and smaller numbers forever. Therefore, we must eventually prove
that F' is true for some number or numbers without using any assumptions.

The only property of IN necessary for (2.22) to be a sound proof of
Vn € IN: F is that there is no infinite sequence mg, my, mo, ... of elements
in IN such that mg > m; > mg > ... is true. Statement (2.22) proves
Vn € S:F for any set S with a greater-than relation > satisfying this con-
dition.

For later use, we define the property we need S to satisfy for an arbitrary
collection S, not just a set. A relation on a collection S is defined to be a
Boolean-valued mapping > on pairs of values in S, where we write n > m
instead of = (n,m). We define > to be well-founded on S iff there does
not exist a function f with domain IN such that f(i) is in S for all 1 € IN
and Vi € IN: f(i) = f(i +1). The following theorem can be generalized to
an arbitrary collection S, but we state it only for sets.

Theorem 2.2 If > is a well-founded relation on the set .S, then proving
the following statement proves Vn € S: F.
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ASSUME: NEW n € S,
Vme{ieS :n>=i}: F WITH n < m
Prove: F

This kind of proof is called a proof by well-founded induction. An example
is proving a property F' of subsets of a finite set T' by induction on the size
of the subset. We prove F' is true of the empty set and that it is true of a
nonempty subset U of T if it is true of some proper subsets of U. The set
S of the theorem is P(T) and U > V is defined to be true iff V is a proper
subset of U.

2.2.6.3 Collections

ZF has mind-bogglingly big sets. Not only is P(IR) bigger than IR, and
P(P(IR)) bigger than P(IR), and P(P(P(IR))) bigger than ..., but the
union of all these huge sets is also a set. However, there are collections of
sets that are too big to be a set. The biggest such collection is the collection
of all sets, which we call V.

Here’s how we show that V can’t be a set. If V were a set, then
{v € V:=(v € v)} would be a set; let’s call that set S. Consider the formula
S e S. If S were a set, then S € V would be true, so the definition of the
subsetting construct would imply S € S is equivalent to =(S € S), which is
impossible. Therefore, V can’t be a set. This argument is called Russell’s
paradox, because it was discovered by the mathematician and philosopher
Bertrand Russell.

Since V can’t be a set, any collection C the same size as V also can’t
be a set because if it were, the 1-1 correspondence between the elements
of V and C would, by the imaging construct, imply that V is a set. In
general, if there is a 1-1 correspondence between the elements of V and a
collection of elements contained in C, then C can’t be a set. (This follows
from Russell’s paradox and the generalized Schréder-Bernstein Theorem.)
For example, the collection of all finite sets isn’t a set because S <> {S}
is a 1-1 correspondence between the values in ¥V and the collection of sets
having one element, all of which are finite sets.

2.2.6.4 Eliminating Collections

There’s a way we could use only sets, without mentioning collections that
aren’t sets. Instead of letting V be the collection of all sets, we could define
it to be a really big set. In particular, we could define it to be big enough
to include the real numbers, the Booleans, and all the sets we can express
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using them and the operators and constructs of ZF. Instead of letting a
value be any ZF set, we could let it be any element of V.

The argument of Russell’s paradox still applies when V is defined in this
way. It shows that V can’t be an element of itself—in other words, that V
can’t be a value. Instead of having collections that are not sets, we would
have subsets of V that are not values.

Changing our definition of V like this would make no practical difference,
because it would make V big enough to contain every set we would ever want
to describe. All it would do is change the terminology, replacing collection
and set with subset of V and value (element of V). I think it’s less confusing
to think about sets versus collections rather than sets that are values versus
sets that aren’t values. We will therefore keep defining WV to be the collection
of all sets.

The possibility of making V a ZF set is interesting for the following
reason. We use math to describe and reason about the collection of all
possible executions of a program, and we will see that this collection isn’t
a set/value. Most math is based on sets, not collections. If we apply math
that was developed for reasoning about sets to deduce a result about this
collection, we could in theory obtain an invalid result. The math used in
this book is, from a mathematical viewpoint, so simple that such a mistake
is unlikely. (The one conceivable exception is in Appendix Section A.5.)
The ability to make V a ZF set means that even if we did deduce something
that was incorrect because V is not a set, then a counterexample could not
arise in practice.

2.2.7 Meaningless Expressions

We now address the issue, raised above, of what an expression like (z+y) Az
means. To do that, we answer a question that might have arisen when you
studied arithmetic: What does 1/0 equal?

As a child T was taught that I wasn’t supposed to write 1/0. But I later
realized that sometimes it’s a perfectly natural thing to write. For example,
this is a theorem of arithmetic:

EVereR : (z#0) = (zx(1/z)=1)

Therefore, the V Elimination law of predicate logic implies that
(z#0) = (zx(1/z)=1)

is true for all x € IR. In particular, this formula is true:

(2.23) (0£0) = (0 (1/0) = 1)
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This is a true formula containing the expression 1/0 that children aren’t
supposed to write.

So, what does 1/0 equal? Some think that it should be an evil value
that can corrupt expressions in which it appears, causing them to equal
that evil value. This leads to a three-valued logic, in which the value of a
predicate can equal not only TRUE or FALSE but also the evil value. This is
unnecessarily complicated.

The simple answer to “What does 1/0 equal?” is “We don’t know.” It’s
a value, but our definition of “/” doesn’t tell us what value. It might equal
v/2; it might equal the set IN. Formula (2.23) is true because 0 # 0 equals
FALSE, and FALSE = P equals TRUE for any predicate P. A formula like
1/0 is meaningless, meaning that all we know about it is that it’s a value.

Meaningless expressions don’t concern us because we shouldn’t write
them. Writing £ U1 when we meant to write £ + 1 is an easy error to detect.
It will be found with any method that can find subtle errors in abstract
programs. There is no reason to complicate the math that we use by trying
to make meaningless expressions illegal.

A natural way to define division of real numbers is:

r/s 2 CHOOSE g€R : g*s=r

Since there is no real number ¢ for which 10 = 1, this defines 1/0 to equal
CHOOSE ¢ € IR : FALSE, which is a meaningless expression. However, 2/0
equals this same meaningless expression, so this definition implies 1/0 = 2/0.
I don’t like that, so I prefer a definition such as:

r/s = IF s#0 THEN CHOOSE ¢ €IR : q*s=r
ELSE {r}+ {s}

This tells nothing about /0, except that the Substitution Rule implies that
it equals «/0 if r = u.

2.3 Functions

2.3.1 Functions as Mappings

Mathematicians usually define a pair? (z,y) to be a set (usually the set
{{z},{z,y}}) and define a function f to be a set of ordered pairs, where the

4Mathematicians generally enclose pairs in parentheses, but parentheses are used for
lots of other things, so we make formulas containing pairs easier to read by using angle
brackets ( and ) instead.
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pair (z, y) in f means that f(z) equals y. But they seldom use that definition
to define a particular function, instead defining the squaring function sq on
real numbers by writing something like:

Let sq be the function on IR such that sq(z) = 22.

I prefer to define a function to be a kind of mapping that is a set/value,
without defining what its elements are—in part because it’s convenient to
define a pair to be a function. The function sq is written as: z € IR — z2.
In general, the meaning of the function construct v € D + exp is defined
by this axiom:

=VYeeD: (veDw— exp)le) = (exp WITH v < €)

The variable v in this construct is a bound variable, and D is not in its
scope. The set D is called the domain of the function, and the domain of
a function f is written DOMAIN(f). The value of f(e) is unspecified unless
f is a function and e is in its domain. Two functions f and g are equal iff
they have the same domain and f(v) = g(v) for all v in their domain. More
precisely, we take this to be an axiom:

(224) E (e D exp1)=(vEEr expy)) =
(D=FE) N (YveD : exp1 = expa)

We define D — S to be the set of all functions f with domain D such that
f(xz) € §forall z € D. A value f is a function with domain D iff f equals
v € D — f(v). We can therefore define the set D — S by:

Efe(D—=S8) = Af=weDw f(v))
ANVYveD: f(v)e S

(Like all our definitions of set-forming operators, this asserts that D — S isa
set if D and S are sets.) It follows from (2.24) that there is a unique function
whose domain is the empty set. That function can be written v € {} — 42,
where we can replace 42 with any value.

An array in modern coding languages is described mathematically as
a function, where the expression f[z] in the language means f(z). For a
variable f whose value is an array/function, assigning the value 4.2 to f[14]
changes the value of f to a new array/function that we can write as

T € DOMAIN(f) + IF z =14 THEN 4.2 ELSE f(z)
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Mathematicians have little need to write such a function, but it occurs of-
ten when math is used to describe programs, so we need a more compact
notation for it. We write it like this:

f EXCEPT 14 — 4.2

This notation has been used above when f is an interpretation T. An
interpretation is a function whose domain is the set of all variable names.
We have defined what are usually called functions of a single argument.
Mathematicians also define functions of multiple arguments. For example,
+ can be considered to be a function of two arguments, where = + y is an
abbreviation of +(z,y). A function with n arguments can be considered to
be a function whose domain is a set of n-tuples, so f(z, y) is an abbreviation

of f({z,y)).

A function is a special kind of mapping that is a value. A mapping
can be defined to assign a specified value to elements of any collection. For
example, the mapping P, where P(S) is the set of subsets of S, is defined
on the collection of all sets. However, P is not a value, so it can’t be the
value of a variable. More precisely, as explained in Appendix Section A.1, we
can’t let P be the value of a variable because we don’t know if it’s a set. A
function is a value, no different than values like v/2 and IN. But the value of
f(v) for a function f can be specified only for values v in DOMAIN(f), which
has to be a set. When describing a program mathematically, we often have
to decide whether or not to define a particular mapping to be a function. If
we want to allow it to be the value of a (mathematical or program) variable,
then it must be a function.

2.3.2 Sequences and Tuples

We often number the items in a list, which means giving each item a name
like item number 2. We will use two different kinds of lists that are numbered
in different ways:

Ordinal These are lists whose items are naturally named with the ordinal
numbers first, second, third, etc. For example, in a list of people
waiting to be served, the second person to be served is naturally named
person number 2.

Cardinal These are lists in which it is natural to name an item by its
distance from an item numbered 0. For example, it’s natural to number
the floors of a building by their distance from the ground floor. The
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ground floor is floor number 0 and floor number 2 is two stories above
the ground floor.

I think mathematicians call such lists sequences, so we will call them ordinal
and cardinal sequences.

In most of today’s coding languages, array elements are numbered start-
ing with 0. They make it convenient to describe cardinal sequences and less
convenient to describe ordinal sequences. When I started describing abstract
concurrent programs with mathematical formulas, I discovered that the for-
mulas were usually simpler if I described finite lists as ordinal sequences.
However, the meaning and properties of the formulas are defined in terms
of infinite sequences and finite prefixes of those sequences; and the math is
simpler if those are cardinal sequences. So, we use both kinds of sequences.

The obvious way to represent a sequence mathematically is as a function
whose domain is the set of numbers of the sequence’s items. An ordinal
sequence of length n (one containing n items) is a function whose domain is
1..n. We write ordinal sequences as lists enclosed in angle brackets. Thus, if
s is the 4-item ordinal sequence (2, {1,1/2},2, (7)) then DOMAIN(s) = 1..4,
s(1) and s(3) equal 2, 5(2) equals the set {1,1/2}, and 5(4) equals the 1-item
sequence (7), which equals 7 € {1} — 7.

A pair like (42, —3) is therefore a 2-item sequence. There is no difference
between tuples and finite ordinal sequences. An n-tuple is a function with
domain 1..n. This provides a simple, natural way of referring to the items
of a tuple: the i*" item of a tuple # is #(i).

The Cartesian product x of sets is defined so that § x T x U is the set
of all triples (s, t,u) with s € S, t € T, u € U. Deciphering this definition
of the general Cartesian product Sy x --- x S, of n sets §;, as well as the
rest of the definitions in this section, is a good way to become familiar with
the math that is the topic of this chapter:

>

Sy x--x§, 2
{fe@..n=J{Siziel..n}): (Viel..n: f(i)€S:)}

We define Seq(S) to be the set of finite ordinal sequences whose items are
elements of the set S:

(2.25) Seq(S) = |J{(1..n—=8) : neIN}

The empty sequence () has domain 1..0, which is the empty set. It’s a
simple way to write the (unique) function whose domain is the empty set.
(It is the one sequence that is both an ordinal and a cardinal sequence.)
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We now define some operators on both ordinal and cardinal sequences.
To make it easier to write definitions that apply to both kinds of sequence,
for a nonempty sequence s we define 15/(s) to equal 1 if s is an ordinal
sequence and 0 if it is a cardinal sequence:

1°%(s) £ 1F 0 € DOMAIN(s) THEN 0 ELSE 1

Recall that #(5) is the number of elements of a finite set S.

Len(s) The length of the finite sequence s. It equals #(DOMAIN(S)).
Head(s) The first item of a nonempty sequence s. It equals s(1%(s)).
Tail(s) The remainder of the nonempty sequence s after its first item is

removed. It equals:
i€{j—1:7¢€ (poMAaN(s)\{1%%(s)})} + s(i+1)
sot The concatenation of the finite sequence s with the finite or infinite

sequence t, both of them the same kind of sequence—either ordinal
or cardinal. It equals:

i € DOMAIN(s) U {j + Len(s) : j € DOMAIN(?) }
— IF ¢ € DOMAIN(S) THEN s(i) ELSE t(i — Len(s))

It would be nice to define Append(s,v) to be the sequence obtained by
appending the item v to the end of the finite sequence s. However, there is
no way to decide if Append((),v) is an ordinal or cardinal sequence, since
the empty sequence () is both. We will need to use Append only for ordinal
sequences, so we define it by:

Append(s,v) = so(v)

In this book, a list means a piece of syntax consisting of expressions
separated by commas. For example:

Let x be the list z1, ..., z, of variables.

means that the symbol x is an abbreviation for z1,..., z,, where each z;
is a variable. The expression (x) is then an abbreviation for the n-tuple
(%1,...,z,) of variables.
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2.4 Definitions

Definitions are omnipresent in mathematics. Despite their importance,
mathematicians seem to give little thought to what definitions actually
mean. What they mean is a practical concern because if it contained no new
definitions, the formula that describes a typical abstract program would be
hundreds of lines long. We can understand such a large formula only by us-
ing definitions to decompose it into understandable pieces. A precise under-
standing of the abstract programs we write requires a precise understanding
of what those definitions mean.

To understand a defined symbol, we need to understand what the symbol
is defined in terms of. If we expand all definitions used in its definition, we
obtain a formula containing only operators we assume to be understood by
the readers of the formula. All those operators are mappings on collections
of values or of tuples (usually pairs) of values. The operators of arithmetic
can be viewed as functions whose domains are sets of numbers or pairs of
numbers. Operators like €, U, and DOMAIN are mappings on values/sets or
pairs of values/sets. Operator just means mapping.

The meaning of constructs that introduce bound variables is not hard to
define in terms of the view that eliminates bound variables by considering
those constructs to be operators on mappings. However, I assume you un-
derstand the constructs of ordinary math already defined, and there is no
need to define any new ones. So we need only consider definitions of values
and operators.

This section first explains the meaning of ordinary definitions, then dis-
cusses recursive definitions, and then describes definitions that are local to
proofs and to expressions.

2.4.1 Ordinary Definitions
2.4.1.1 Definitions with no Parameters

We define an ordinary (non-recursive) definition to be a syntactic abbre-
viation. Doing this raises a problem that arises even with the simplest
definitions—ones of the form F = .. ., so F takes no arguments. We illus-
trate the problem with a simple example.

Suppose that, in a context in which the values of the variables z and y
are elements of IR, we write the definition exp = z + y. Since x and y are
assumed to be real numbers, this defines exp to be a real number. Since exp
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and y are real numbers, this formula is valid:
(2.26) 3z €eR : z4+y > exp

However, if exp is an abbreviation for z + y, then formula (2.26) is an
abbreviation for

(227) dzeR:z+y>z+y

which equals FALSE.

The source of this apparent contradiction is what logicians call “variable
capture”. As explained in Section 2.1.9.1, the variable x in the definition
of exp and the variable z in (2.26) are actually two different variables. One
is the bound variable introduced by dz; the other is the variable z in the
definition of exp, which was introduced in the context of that definition. So
(2.27) is really a lazy way of writing something like:

(2.28) Jzo €R : w22+ y > 213+ Y

However, unlike formulas we’ve considered up to now, there’s no way to tell
by looking at (2.27) that it contains two different variables written as z.

This is not a problem for us now, because we're defining the meaning
of the definition; and to define the meaning we can pretend that (2.27) is
really (2.28). It’s also not a problem when building tools, because those two
different variables written x are represented by different wvariable objects.
However, it’s a problem if we’re doing our own reasoning with pencil and
paper and want to expand the definition of ezp in (2.26).

Logicians solve this problem by saying that when you expand the defi-
nition of exp in (2.26), you have to substitute a different bound variable for
x. Instead, I prefer to prevent the problem from arising. This is done by
obeying a simple rule:

Never give a new meaning to a symbol that already has a meaning.

For (2.26) to be meaningful, exp must already have a meaning. For the
definition of exp to be meaningful, z must already have a meaning. Hence,
the rule forbids the use of z as the bound variable in (2.27). The “already”
in the rule assumes formulas are read in logical order, the assigning of a
meaning to a symbol preceding the symbol’s use. If we wrote (2.26) before
we decided what the definition of exp should be, the rule would force us to
rewrite it if we defined exp in terms of a variable named z. This rule is
enforced by TLA™ because it helps prevent errors.

However it’s done, we will assume that the problem of variable capture
has been solved and we will ignore it.
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2.4.1.2 Definitions with Parameters

Extending the meaning of a definition to definitions with a parameter is
straightforward. The definition Op(v) = exp defines the mapping Op by
defining Op(e) for an expression e to be an abbreviation for

(2.29) exp WITH v < e

The variable v in (2.29) is a bound variable whose scope is the expression
exp.

Generalizing to definitions with multiple arguments is also easy. For
example, if we define an infix operator W by w W v 2 ezp, then for any
expressions el and e2, the expression el W e2 is an abbreviation for:

exp WITH w < el, v < e2

Since we regard definitions as purely syntactic abbreviations, they apply
just as well to definitions whose arguments need not represent only values
but can also represent mappings. For example, this

Double(F,z) = F(F(z))

defines Double(P,{a,b}) to equal P(P({a,b})). (This set contains 16 ele-
ments, one of which is {{},{b}}.)

2.4.2 Recursive Definitions

A recursive definition is one in which the symbol being defined is used in its
definition. Allowing recursive definitions of mappings in ZF without intro-
ducing logical inconsistency is tricky. A method of doing this by translating
a recursive definition to a non-recursive one was apparently first given in
this century [16]. It is explained in Appendix Section A.2. Here we describe
recursive definitions informally, showing the translation to a non-recursive
definition only for recursive function definitions.

Here is a recursive definition of the operator #, where we have defined #
informally to be the mapping such that #(.5) equals the number of elements
in S if S is a finite set. (Its value is unspecified if S is an infinite set.)

(2.30) #(8) = 1 S ={} THEN 0
ELSE 1+ #(S\ {CHOOSE ¢ : e € S})

The same kind of reasoning that justifies proof by mathematical induction
shows that this defines #(S) for any finite set S.
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In general, for a recursive definition of an operator F' on a collection C of
values, the recursion “terminates” and uniquely defines F'(v) for all v in C
if there is a well-founded relation > on C for which the following condition
is satisfied:

(2.31) For any v in C, the value of F(v) can depend only on the values of
F(w) for some values w in C with v > w.

Definition (2.30) satisfies condition (2.31), where C is the collection of all
finite sets and § > T is defined to equal TRUE iff T is a proper subset of S.

Condition (2.31) allows us to define operators on collections. If we want
to define an operator F' recursively on a set, then there’s a simple way to
define F' to be a function, if the recursion always terminates. For example,
the factorial function fact is the function with domain IN such that fact(n)
equals lifn =0and nx(n—1)*...x1if n > 0. (fact(n) is usually written
n!.) Its recursive definition is:

(2.32) fact = n €N +— IF n=0 THEN 1 ELSE n * fact(n — 1)

We define this definition to be equivalent to the following non-recursive
definition.

fact = CHOOSE f :
f=(nelN—1F n=0 THEN 1 ELSE nxf(n—1))

Remember that CHOOSE f : P equals a value f satisfying P only if = 3f: P
is true. It is true of the CHOOSE expression in the definition of fact, so fact
does equal the right-hand side of its definition (2.32), because the operator
definition

f(n) = 1F n=0 THEN 1 ELSE n*f(n —1)

satisfies (2.31), where C is the set IN and > is >.

The generalization from this example to arbitrary recursive function def-
initions should be clear. In practice, it is almost always obvious what a
recursive definition of an operator on a collection defines because it’s clear
that the recursion terminates for all values in the collection. For a function,
that collection is its domain, which is a set.

2.4.3 Local Definitions

Thus far, we have considered definitions with no explicit scope. Our def-
inition of Tail implicitly remains in effect for the rest of this book. The
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implicit scope of our definition of Double in Section 2.4.1.2 is that section.
We now introduce definitions with two explicitly limited scopes.

These local definitions allow the possibility of a symbol’s definition oc-
curring in the scope of a definition of the same symbol, or in the scope of
a bound variable having the same name. This raises the same problems as
multiple variables with the same name, and it can be handled the same way.
But in practice, it never occurs for defined symbols.

2.4.3.1 Definitions in Proofs

It’s often useful to make definitions local to a proof—more precisely, local
to a single proof within a larger hierarchically structured proof. We allow a
proof to contain steps that just make one or more definitions. To make the
proof easier to read, we begin such a step with the keyword DEFINE. There’s
no need to number a definition step, since we can refer to the definition by
the name of the symbol being defined. As with the assertion of any proof
step, the scope of each of the definitions in a DEFINE statement is the rest
of the current proof (including the rest of that statement).

A definition needs no proof. However, we may need a proof that a recur-
sive definition defines what we want it to. In that case, the definition step
would be followed by a statement asserting this. For example, a recursive
function definition would appear in a proof like this:

DEFINE f = v e S+ FDef(v,f)

42. f = (v € S+ FDef(v,f))
4.2.1. ...

See Appendix Section A.2 for how to prove such an assertion. Most of the
time, it’s obvious that the definition defines what we expect it to, in which
case step 4.2 and its proof can be omitted in a hand proof.

2.4.3.2 Definitions in Formulas

We can also make definitions that are local to an individual formula. We
do this with a LET/IN construct, the LET clause making definitions that are
local to the IN clause. For example, here is the definition of the operator
SetSum, where SetSum(S) equals the sum of the elements of any finite set
S of numbers:

SetSum(S) = 1 S ={} THEN 0

ELSE LET n = CHOOSE m : m € S
IN  n+ SetSum(S\{n})
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The symbol n defined in the LET clause is an abbreviation for the CHOOSE
expression; its scope is the IN clause. The definition would be equivalent,
but harder to read, if the two occurrences of n in the IN clause were replaced
by two copies of that CHOOSE expression. A LET clause can contain multiple
definitions.



Chapter 3

Describing Abstract
Programs with Math

3.1 The Behavior of Physical Systems

Programs are meant to be executed on physical computers. I have been
guided by the principle that any statement I make about a program should
be understandable as a statement about its execution on one or more com-
puters. I believe this was the principle that guided Turing in defining the
Turing machine as an abstraction of a physical computing device.

The description of our science of concurrent programs begins by exam-
ining the physics of computing devices. We don’t care about the actual
details of how transistors and digital circuits work. We are just interested
in how scientists describe physical systems. As a simple example, we look
at a planet orbiting a star the way an astronomer might.

We consider the one-planet system’s behavior starting at some time tg,
after the star and planet have been formed and the planet has settled into
its current orbit. Let IRZ be the set {r € IR: 7 > to} of all real numbers r
with r > ¢3. The behavior of the one-planet system is described by its state
at each instant of time. We assume the star is much more massive than the
planet, so we can assume that it doesn’t move. We also assume that there
are no other objects massive enough to influence the orbit of the planet, so
the state of the system is described by the values of six state variables: three
describing the three spatial coordinates of the planet’s position and three
describing the direction and magnitude of its momentum. Let’s call those
state variables vy, ..., vg; we won’t worry about which of the six values
each represents. The quantities these variables represent change with time,
so the value of each variable v; is a function, where v;(t) represents the value
at time ¢. The behavior of the system is described mathematically by the

72
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function o with domain IR= such that o(t) is the tuple (v1(t), ..., vg(t)) of
numbers, for every ¢ € IRZ. Physicists call () the state of the system at
time ¢.

In this description, the planet is modeled as a point mass. Real plan-
ets are more complicated, composed of things like mountains, oceans, and
atmospheres. For simplicity, the model ignores those details. This limits
the model’s usefulness. For example, it’s no good for predicting a planet’s
weather. But models of planets as point masses are sometimes used to plan
the trajectories of a real spacecraft. It’s also not quite correct to say that the
model ignores details like mountains and oceans. The mass of the model’s
point mass is the total mass of the planet, including its mountains and
oceans, and its position is the planet’s center of mass. The model abstracts
those details, it doesn’t ignore them.

The laws that determine the point-mass planet’s behavior o are ex-
pressed by six differential equations of this form:

1) D) = ri)

where ¢t € IRZ and each f; is a function with domain IRZ such that f;(t)
is a formula containing the expressions v1(t), ..., vg(t). Don’t worry if you
haven’t studied calculus and don’t know what equation (3.1) means. All
you need to know is that it asserts the following approximate equality for
small non-negative values of dt:

(3.2) wi(t+dt) ~ vi(t)+fi(t)=dt

and the approximation gets better as dt gets smaller, reaching equality when
dt = 0. The differential equations (3.1) have the property that for any time
t > to and any time r > ¢, the values of the six numbers v,(¢) and the
functions f,; completely determine the six values v;(r) and hence the value
of o(r). That is, the equations imply:

History Independence For any time ¢ € IRZ, the state o(r) of the system
at any time r > ¢ depends only on its state o(t) at time ¢, not on
anything that happened before time t.

The generalization from a planetary system to an arbitrary physical system
starting at time ty is straightforward. The system is described by state
variables vy, ..., vy, and its behavior ¢ is described mathematically as the
function with domain IR= such that o(t) equals (vy(t),...,v,(t)). History
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independence is satisfied by any isolated physical system—that is, by any
system that is assumed not to be influenced by anything outside the system.!

There is one way our one-planet system differs from most systems. For
this system, it is possible to solve the differential equations (3.1) to write
the functions v; as formulas in terms of ordinary mathematical operations.
Even for two planets around a star that is not much heavier than them, it
is impossible to write such a solution. The functions v; can be proved to
exist and be unique, but the best we can do in general is find very close
approximations to those functions for some finite interval of time.

Physics describes systems with math. Remember that in math, there are
infinitely many variables. A description of any particular system contains
only a finite number of them—the system variables. The description (3.1) of
a planet orbiting a star contains only the six system variables describing the
planet’s state. It doesn’t say that there is nothing else in the universe. It just
says nothing about any other planets. Instead of thinking of (3.1) and (3.2)
as describing a planet orbiting a star, it’s more accurate to think of them
as describing a universe in which the planet is orbiting the star. They also
describe a universe containing both the planet and a spacecraft that orbits
the star; they just say nothing about the spacecraft, since the spacecraft is
too small to affect the planet’s motion. (The spacecraft’s motion could be
affected by the planet.) Formulas (3.1) and (3.2) just say nothing about the
spacecraft.

Physical science is descriptive. The laws of physics describe how a planet
moves; they don’t instruct the planet. Programs are prescriptive; they tell a
computer what to do. This may make it seem strange to use physical science
as a guide to a science of programs. But being descriptive or prescriptive
is not a property of the math. It’s just how we choose to view that math.
We can view the equations of planetary motion not only as a description of
how a planet moves, but also as commands given to the planet by nature.
The math is agnostic. Our science views a program as a description of what
behaviors it allows, not as commands for producing those behaviors. This
view allows much more freedom in describing programs.

'In classical physics, the state at time #o uniquely determines the system’s subsequent
behavior. The situation is less clear in quantum physics where multiple subsequent be-
haviors seem possible, but the set of those behaviors is completely determined by the
state.
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3.2 Behaviors of Digital Systems

3.2.1 From Continuous to Discrete Time

Digital systems are physical systems, usually electromagnetic, in which cer-
tain stable states represent a collection of one-bit values. For example, at
a certain point in a circuit, 0 volts may represent a 0 and 3.3 volts may
represent a 1. Classical physics describes the behavior of physical systems
as continuous.? If the voltage at some point in a circuit changes from 0 volts
to 3.3 volts, it must pass through 1 and /2 volts.

Computers and other digital systems are designed so that each bit can
be thought of as passing instantaneously from one stable state to the next.
This means that we can think of there being a sequence of discrete times tg,
t1, to, ... that are the only times at which the value of a bit can change.
(We assume there is an event at time ¢y that initializes all the bits of the
device.) We pretend that between times ¢; and t;41, the part of the circuit
representing each bit is in a stable state. Moreover, whether a bit changes
its value at time ¢;,1 depends on the (stable) values of the bits immediately
before time tj+1.3 Thus, the system is history independent.

Although built from one-bit registers, digital systems are designed
so that larger components can also be viewed as changing their state
instantaneously—for example, a 128-bit register or even all the bits in a
chip controlled by a single clock. We can pretend that the entire component
changes its value in discrete steps that can occur only at the times ¢;. Thus,
we can view a digital system as one whose components are represented by
state variables that can have more than two values.

When a digital system is executing a program, the state of the program
does not correspond directly to the state of the system. The value of a
program variable might be represented by different parts of the system at
different times. For example, its value may at some times be stored in a
memory chip, at some times it may be in a register of a processor chip, and
at some times it might be stored on a disk. Later, we’ll see what it means
mathematically for a digital system to implement a program in this way.
For now, consider a concrete program to be just a digital system described

2Here, classical physics includes relativity but not quantum mechanics. I believe that
quantum mechanics also describes a continuous universe, but a discussion of that would
take us too far afield.

3The t; are pretend times, not exact physical times. Two bits that change at the
same pretend time may change at different physical times because the clock pulse that
generates the change may reach one of them a fraction of a nanosecond before the other.
Chip designers must ensure that we can pretend that they change at the same time.



DESCRIBING ABSTRACT PROGRAMS 76

by discretely changing variables whose values are not just bits but may be
any data structure provided by the language—for example, 128-bit integers.
An abstract program is the same, except the value of a variable may be
any value—for example a real number such as v/2, not just a finite-precision
approximation like 1.414213562. Modeling a science of programs on the
science of physical systems ensures that it can address real problems, and
we are not just creating a science of angels dancing on the head of a pin.
(However, the science should be able to describe any discretely behaving
angels, wherever they might be dancing.)

We are seldom interested in the actual times ¢; at which state variables
can change. To simplify things, we consider only the sequence of states
through which the system passes, ignoring the times at which it enters and
leaves those states. We call the state created at time ¢; state number j.
Instead of letting a state variable v be a function that assumes the value
v(t) at time ¢, we consider it to be a function that assumes the value v(j) in
state number j. In other words, the value of a state variable v is a sequence
of values. A behavior o of a program is also a sequence, where o(j), its state
number j, describes the values of the device’s variables in that state.

If a program or a digital device runs forever, then the sequence of times
t; is infinite and therefore so is the sequence o of its states. But if a pro-
gram terminates, then those sequences can be finite. Other than parallel
programs, in which concurrency is added to a traditional program so it can
run faster by using multiple processors, most concurrent programs are not
supposed to stop. A concrete concurrent program will not really run for-
ever, but we describe it as running forever for the same reason there are an
infinite number of integers even though we only use a finite number of them:
it makes things simpler.

Still, some concurrent programs are supposed to stop, so we have to
describe them. For simplicity, we describe those programs as well with
infinite state sequences. Exceptionally observant readers will have noticed
that while the times ¢; had to be chosen so we can pretend that the state
changes only at those times, we did not require that the state had to change
at each of those times. There can be times ¢; at which none of the program
variables’ values change. In particular, if the program stops, we can add an
infinite number of times ¢; after it has stopped. This leads to an infinite
sequence of states such that, for some k, the values of the program’s variables
after state number k are the same. We call a pair (o(j),0(j+1)) of successive
states in a behavior o a step of 0. A step in which the values of the program’s
variables do not change is called a stuttering step of the program.

We call a behavior ending in infinitely many stuttering steps a halting
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behavior of the program. It describes an execution in which the program
stops. There are many reasons a program might stop—for example, an error
might cause it to abort. If the program stops because it has completed what
it was supposed to do, we say that it terminates. The term halting covers
all cases when the program stops.

Mathematically, a behavior of a digital system or an abstract program
is an infinite cardinal sequence of states, where each state is an assignment
of values/sets to variables. There is a natural tendency to think of state
number j of a behavior as occurring at time j on some clock that ticks at
a constant rate. Don’t think of it like that. A microsecond might elapse
between when the system reaches state number 5 and when it reaches state
number j+1, and a day or a femtosecond might then elapse before it reaches
state number j+2. All we know is that the system can’t reach state number
j + 1 before it reaches state number j.

By removing any information about the physical time at which things
happen, it may appear that we have eliminated the possibility of describing
how much actual time it takes for something to happen. That’s not the case,
and Section 4.4 explains how it’s done. However, correctness of few programs
depends on exactly how long it takes the program to do something, and I
know of no commonly used coding language that allows us to write such
programs. To my knowledge, nothing in the definition of the Java coding
language assures us that executing the statement x = x+1 takes less than a
century.

3.2.2 An Example: Sqrs

Our first example is a very simple abstract program called Sqrs that is
described in Figure 3.1 with pseudocode. The variables statement describes
the program variables and their initial values (their values in state 0). In
this example, the program variables are z and y, and their initial values are
both 1. The program’s code consists of a while TRUE loop, which means
that the body of the loop is repeatedly executed forever. Program Sqrs is
an abstract program because it runs forever, producing a behavior with an
infinite number of states, unlike a concrete program that would halt with
an error when z became too big.

In a science, it would be crazy to let “=” mean anything other than what

“:=" to mean

it has meant in mathematics for several centuries, so we use
assignment. Except for the label a that you can ignore for the moment,
it should be obvious what an execution of the loop body does. What’s

not obvious in most pseudocode and in virtually all real code is how to
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variables z =1, y = 1;
while TRUE do
oz :=x+y+2;
Yy i=y+2
end while

Figure 3.1: The simple abstract program Sqrs.

represent the execution in a behavior—which means as a sequence of states.
In particular, how many different steps in the behavior describe a single
execution of the loop body?

We would expect to describe execution of the loop body of Sqr with at
least one step. But should there be more? For example, should evaluating
x4y in the first assignment statement be a separate step? Coding languages
seldom answer this question because it makes no difference to the result
computed by a traditional program. However, it can make a big difference
for concurrent programs.

We will adopt the PlusCal algorithm language’s [36] convention of using
labels to indicate what the separate steps of a behavior are. The rule is that
execution from one label to the next constitutes a single step. This means
that a step begins and ends with program execution at a label. For program
Sqrs, this implies that execution of the entire loop body, starting from label
a and finishing when the program reaches a again, is a single step. With
this choice of what constitutes a step in the behavior, the values z(j) and
y(7) of the variables in each state j of the behavior are determined by two
formulas:

(3.3) (z(0) =1) A (y(0) =1)

B4) VjeN:ANz(+1)=2()+yQy)+2
ANy(G+1)=y()+2

We call (3.3) the initial predicate. It determines the initial state. Formula
(3.4) is called the step predicate. It’s the discrete analog of the differential
equations (3.1) that describe the orbiting planet. Instead of describing how
the values of the variables change in the continuous behavior when time
increases by the infinitesimal amount d¢, the step predicate (3.4) describes
how they change when the state number of the discrete behavior increases
by one.
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You can check that (3.3) and (3.4) define a behavior that begins as
follows where, for example, [z :: 16, y :: 7]s indicates that state number 3
assigns the values 16 to  and 7 to y, and the arrows are purely decorative.

[x::l] _)lx::ﬂ %[x::ﬂ _)[x::lG} _)[x::25] _
y::l0 y::?)1 y::52 y::73 y::94

These first few states of the behavior suggest that in the complete behavior,
z and y equal the following functions:

(35) z = (j e N~ (j+1)%)
y=(GeNm—2xj+1)

To prove that (3.3) and (3.4) imply (3.5), we must prove they imply:
(8:6) V€N : (z() = (G +1)*) A () =27 +1)

A proof by mathematical induction that (3.3) and (3.4) imply (3.6) is a nice
exercise in algebraic calculation.

We can think of (3.5) as the solution of (3.3) and (3.4), just as the for-
mulas describing the position and momentum of the planet at each time ¢
are solutions of the differential equations (3.1). It is mathematically im-
possible to find solutions to the differential equations describing arbitrary
multi-planet systems. It is mathematically possible to write explicit descrip-
tions of variables as functions of the state number like (3.5) for the abstract
programs written in practice, but those descriptions are almost always much
too complicated to be of any use. Instead, we reason about the initial pred-
icate and the step predicate, though in Section 3.4.1 we’ll see how to write
them in a more convenient way.

The interesting thing about program Sqrs is that it sets the value of x
to the sequence of all positive integers that are perfect squares, using only
addition. This is obvious from (3.5), but for nontrivial examples we won’t
have such an explicit description of each state of a behavior. Remember
that history independence implies that, at any point in a behavior, what
the program does in the future depends only on its current state. What is
it about the current state that ensures that if z is a perfect square in that
state, then it will equal all greater perfect squares in the future? There is
a large body of work on reasoning about traditional programs, initiated by
Robert Floyd in 1967 [14], that shows how to answer this question. If you're
familiar with that work, the answer may seem obvious. If not, it may seem
like it was pulled out of a magician’s hat. Obvious or magic, the answer is
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that the following formula is true for every state number j in the behavior
of Sqrs:

(3.7) A ((ﬂ ) (y(j) € N)
y(j) %2 =

2(j) = (”2“)

This formula implies that z(j) is a perfect square, since the first two con-
juncts imply that y(j) is an odd natural number. Moreover, since y(j+1) =
y(7) + 2, the last conjunct implies that z(j + 1) is the next larger perfect
square after z(j). So, the truth of (3.7) for every state number j explains
why the algorithm sets z to all perfect squares in increasing order.

A predicate like (3.7) that is true for every state number j of a behavior
is called an invariant of the behavior. By mathematical induction, we can
prove that a predicate is an invariant by proving these two conditions:

I1. The predicate is true for 57 = 0.

I2. For any k € IN, if the predicate is true for j = k then it’s true for
j=k+1.

For (3.7), I1 follows from the initial predicate (3.3), and 12 follows from the
step predicate (3.4). (Scientists should have no trouble writing the proof; it
might be challenging for engineers.)

A predicate that can be proved to be an invariant by proving I1 from an
initial predicate and 12 from a step predicate is called an inductive invariant.
Model checkers can check whether a state predicate is an invariant of small
instances of an abstract program. But the only way to prove it is an invariant
is to prove that it either is or is implied by an inductive invariant. For
any invariant P, there is an inductive invariant that implies P. However,
writing an inductive invariant for which we can prove I1 and 12 is a skill
that can be acquired only with practice. Tools to find it for you have been
developed [15, 38], but I don’t know how well they would work on industrial
examples.

The first conjunct of the invariant (3.7) asserts the two invariants
z(j) € IN and y(j) € IN. An invariant of the form v(j) € S for a variable v
is called a type invariant for v. An inductive invariant almost always must
imply a type invariant for each of its variables. For example, without the
hypotheses that z(j) and y(j) are numbers, we can deduce nothing about
the values of z(j + 1) and y(j + 1) from the step predicate (3.4).
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variables z =1, y =1, pc = a;
while TRUE do

ez :=x+y+2;

b:y :=y+2
end while

Figure 3.2: The finer-grained abstract program FGSqgrs.

Most mathematicians would not bother to write the first conjunct of
(3.7), simply assuming it to be obvious. However, mathematicians aren’t
good at getting things exactly right. They can easily omit some uninterest-
ing corner case—for example, the assumption that a set is nonempty. Those
“uninteresting corner cases” are the source of many errors in programs. To
avoid such errors, we need to state explicitly all necessary requirements,
including type invariants.

3.2.3 A Finer-Grained Example: FGSqrs

Now consider a modified version Sgrs of our abstract program in which
the execution of each assignment statement in the body of the while loop
is represented as a separate step of the behavior. This is specified in the
pseudocode by adding a label right before the second assignment statement.
The label is b and the program is called FGSqrs.

The natural way to describe the state of FGSqrs is with the variables z
and y and an additional variable to specify which assignment statement is
the next one to be executed.? Such a variable isn’t needed in Sq¢rs because
that program has just a single label. The variable we add is traditionally
called pc (for program counter). We will let its value equal the label from
which the execution described by the next step begins. (That execution
ends when it reaches the following label.) We assume that a and b are two
arbitrary distinct values.

The pseudocode for FGSqrs is in Figure 3.2. The variables declaration
contains pc and its initial value, even though we know pc is needed because
there’s more than one label, and program execution is normally assumed to
start at the beginning of the code. But, a little redundancy doesn’t hurt. A
little redundancy doesn’t hurt.

4In program FGSgrs, an additional variable isn’t needed because which statement
should be executed next can be deduced from the values of the variables x and y, but
that’s not the case in most programs written in pseudocode.
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Here is the mathematical description of the behavior of program FGSqrs.
As with Sgrs, it consists of an initial predicate and a step predicate.

Initial Predicate (z(0)=1) A (y(0)=1) A (pc(0) = a)

Step Predicate
VjeIN :1F pc(j) = a

THEN Az(j+1)=z()+y()+2
ANy +1)=y@)
ANpe(j+1)=1b

ELSE A z(j + 1) = z(j)
ANy(G+1)=y@)+2

Apc(j+1)=a

When they see this step predicate, most programmers and many computer
scientists think that the conjuncts y(j +1) = y(j) and z(j + 1) = z(j) are
unnecessary. They think that not saying what the new value of a variable
equals should mean that it equals its previous value. But if that were the
case, then what we wrote wouldn’t be math. We would be giving up the
benefits of centuries of mathematical development—the benefits that are
the reason science is based on math. An essential aspect of math is that
a formula means exactly what it says—mnothing more and nothing less. If
the step predicate didn’t say what y(j + 1) equals when pc(j) = a is true,
then there would be no more reason for it to equal y(j) than for it to equal
i € IN — /—42.

You may find it discouraging that the mathematical description of
FGSqrs is more complicated than its pseudocode in Figure (3.2). Please
be patient. You will see in Section 3.4.1 how a little notation can simplify
it. We can always write an abstract program more compactly in pseudocode
than in math, as long as we don’t have to explain precisely what the pseu-
docode means. But science is precise, and a science of abstract programs
must explain exactly what they mean. Moreover, tools can’t check an im-
precise description of a program. Math is the simplest way to explain things
precisely.

PlusCal is a precise language for describing abstract programs in what
looks like pseudocode. (However, it’s infinitely more expressive than ordi-
nary pseudocode because its expressions can be any mathematical expres-
sions—even uncomputable ones.) A PlusCal program is translated to a
mathematical description of the program in TLA™. I often find it easier to
write an abstract program in PlusCal than directly in TLAT. However, I
reason about the TLA™ translation, not the PlusCal code. And for many
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abstract programs, including most distributed algorithms, it’s easier to write
the program directly in TLA™ than in PlusCal.

The code whose execution is described as a single step of the behavior is
called an atomic operation. Because a single step in a behavior describing
the execution of Sqrs is replaced by two steps in the behavior describing
the execution of FGSqrs, we say that FGSqrs has a finer grain of atomicity
than Sqrs. Having a finer grain of atomicity implies that the step predicate
is more complicated.

Having a finer grain of atomicity also implies that the inductive invariant
that explains why the abstract program works will be more complicated.
However, there is a trick for obtaining the invariant for FGSgrs from the
invariant (3.7) of Sgrs. Define yy(j) to equal y(j) if execution FGSqrs is at
label a, and to equal the value y(j) will have after executing statement b if
execution is at b. The mathematical definition is:

yy(j) = 1F pe(j) = a THEN y(j) ELSE y(j) +2

Observe that x and yy are changed at the same time by statement a of
FGSqrs exactly the same way that the loop body of S¢rs changes x and
y. Statement b of FGSqrs leaves x and yy unchanged. This implies that,
because (3.7) is an inductive invariant of Sgrs, the formula obtained from
(3.7) by substituting yy for y satisfies condition 12 for FGSqrs. It’s easy
to check that this formula also satisfies 11, so it is an inductive invariant of
FGSqrs. This trick of finding an expression (such as yy(j)) that is changed
by the fine grained program the way the coarse-grained program changes
a variable (such as y) can often be used to obtain an invariant for a finer-
grained abstract program from an invariant of a coarser-grained one. It is
also at the heart of program refinement, the subject of Chapter 5.

3.3 Nondeterminism

The laws of classical physics, such as the laws of planetary motion, are
deterministic. Given the initial values of all the variables, their values at any
later time are completed determined. Causes of nondeterminism are either
negligible because they have an insignificant effect—for example, meteor
showers—or are simply assumed not to happen—for example, cataclysmic
collisions with errant asteroids.

A program is nondeterministic if the initial state of a behavior doesn’t
determine the complete behavior. Even when executed on supposedly deter-
ministic digital systems, nondeterminism is the norm in programs—especially
concurrent ones. Here are some sources of nondeterminism in programs:
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User Input The user giving a value to the program is usually described as
an action of the program that nondeterministically chooses the value
provided by the user. The user can also be described as a separate
process that nondeterministically chooses the value to provide.

Random Algorithms Some algorithms can achieve better average perfor-
mance by making random choices. The science of programs presented
here is not meant for describing average properties of possible behav-
iors, so it can’t distinguish this case from one in which random choices
are the result of user input.

Generality We may want an abstract program to allow multiple possible
implementations. Those possibilities appear as nondeterminism in the
abstract program.

Faults Physical devices don’t always behave the way they’re supposed to.
In particular, they can fail in various ways. Programs that tolerate
failures describe a failure as an operation that may or may not be
executed.

Timing Uncertainty The time taken to perform operations in an individ-
ual process can vary from one execution to another for several reasons,
including (i) being run on different hardware and (ii) competition for
resources with other processes in the same program or in concurrently
executed programs. This results in multiple behaviors in which op-
erations in different processes are executed in different orders. Those
different orders can lead to very different behaviors.

Timing uncertainty is the most important source of errors due to nondeter-
minism that affects all concurrent programs (not just fault-tolerant ones).
Let’s examine a simple example of it.

The example is a trivial abstract multiprocess program called Increment.
It has a variable x that initially equals 0, and each process just increments
z by 1 and terminates. A process does this in two steps: the first step reads
the current value of z, and the second step sets = to one plus the value it
read. You should convince yourself that with N processes, an execution can
terminate with = having any value from 1 through N. The final value of z
will be N if each process executes its two steps with no intervening step by
any other process. The final value will be 1 if all processes read x before
any process sets the value of z.

This abstract program is described with pseudocode in Figure 3.3, where
Procs is the set of processes. (Procs is really a set of process identifiers,



DESCRIBING ABSTRACT PROGRAMS 85

variables z =0 ;

process p € Procs
variables t =0, pc = a ;
a:l 1=z
b: z :=t+1
end process

Figure 3.3: The Increment abstract program for a set Procs of processes.

but for convenience we call its elements processes.) The only assumption
we make about this set is that it is finite and nonempty. The process
statement declares that there is a process for every element of Procs, and it
gives the code for an arbitrary process p in Proc. The variables ¢ and pc are
local to process p, each process having its own copy of these two variables.
Variable z is global, accessed by all the processes. Process p saves the result
of reading z in its variable ¢. The initial value of ¢t doesn’t matter, but
letting all variables have reasonable initial values makes a type invariant
simpler, so we let ¢ initially equal 0.

The mathematical description of the abstract program Increment is in
Figure (3.4). The process-local variables ¢ and pc are represented by mathe-
matical variables whose values in each state are functions with domain Procs,
where t(p) and pc(p) are the values of those variables for process p. The
initial predicate, describing the values of the variables in state number 0,
is simple. The possible steps in a behavior are described by a predicate
that, for each j, gives the values of z(j + 1), t(j + 1), and pc(j + 1) for
any assignment of values to z(j), t(j), and pc(j). It asserts that there are
two possibilities, described by formulas PgmStep(j) and Stutter(j), that are
explained below.

PgmStep(j) describes the possible result of some process executing one step
starting in state j. The predicate equals true iff there exists a process
p for which aStep(p,j) or bStep(p,j) is true, where:

aStep(p,j) describes a step in which process p executes its statement
labeled a in state number j. Its last three conjuncts describe the
values of the three variables z, ¢, and p in state j+1. Many people
are tempted to write ¢(j + 1)(p) = z(j) and pe(j + 1)(p) = b
instead of the third and fourth conjuncts. But that would permit
t(j+1)(¢) and pc(j+1)(g) to equal any values for ¢ # p. Instead
we must use the EXCEPT operator defined in Section 2.3.1. The
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Initial Predicate
A z(0) =0
A t(0) = (p € Procs — 0)
A pe(0) = (p € Procs — a)

Step Predicate
Vj € IN : PgmStep(j) V Stutter(j)
where
PgmStep(j) = 3Ip € Procs : aStep(p,j) V bStep(p,7)

aStep(p,j) =

A pe(i)(p) = a

A z(i+1) = ()

A t(j+1) = (t(j) EXCEPT p — z(j))

A pc(j+1) = (pe(j) EXCEPT p +— b)
bStep(p,j) = A pe(j)(p) =

Az(+1) =t()(p)+1

AtG+1) = t()

A pc(j+1) = (pe(j) EXCEPT p +— done)

Stutter(j) = A Vp € Procs : pe(j)(p) = done
A (2 +1),t( 4+ 1), pe(i +1)) = (2(j), 1(7), pe(j))

Figure 3.4: The Increment abstract program in math.

first conjunct is a predicate that is true or false of state j. It is an
enabling condition, allowing the step described by the following
three conjuncts to occur iff that condition is true.

bStep(p,j) describes a step in which process p executes its statement
labeled b in state number j. It is similar to aStep(p,j). Its
enabling condition is pe(j)(p) = b. The step sets pc(j + 1)(p)
to done, which is a value indicating that the process has reached
the end of its code and terminated.

Stutter(j) describes a stuttering step starting in state j. It is enabled iff
pc(j)(p) equals done for all p € Procs, so all processes have termi-
nated. At that point, PgmStep(j) is not enabled, so only an infinite
sequence of stuttering steps can occur, as required for a terminated
abstract program. Note that the second conjunct in the definition of
Stutter(j) uses the fact that two tuples are equal iff their correspond-
ing elements are equal to write the following formula more compactly:
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(@ +1) =) A (G +1) =1t() A (pe(j +1) = pe)))

A property we might like to prove about abstract program Increment is that,
when it has terminated, the value of z lies between 1 and the number of
processes. Let’s define N to equal #(Procs), the number of processes. Since
a process has terminated iff its local pc variable equals done, the property
we want to prove is that this formula is an invariant of Increment—that is,
true for every j € IN:

(3.8) (Vp € Procs : pc(j)(p) = done) = (z(j) €1..N)

This is not an inductive invariant because condition 12 is not satisfied. For
example, suppose the following is true:

e pc(j)(p) = b and pc(j)(q) = done for all ¢ # p
o t(j)(p) =N

Then (3.8) is true in state number j, but false in state number j + 1.

To show that (3.8) is an invariant of Increment, we must find an inductive
invariant that implies it. Stopping now and trying to find that inductive
invariant by yourself is a good exercise. But it’s not easy if you don’t have
practice finding inductive invariants and don’t have a tool to check if what
you think is an inductive invariant actually is one. So, I will write one for
you.

An inductive invariant almost always requires a type invariant for each
variable. We start by defining TypeOK to assert a type invariant for each
of the three variables:

TypeOK (j) = Az(j)e€0..N
A t(j) € (ProcSet — 0..N)
A pc(j) € (ProcSet — {a, b, done})

TypeOK is an invariant, but not an inductive invariant. For example, if
z(j) =1, t(j)(p) = N, and pc(j)(p) = b, then TypeOK (j) is true but a step
satisfying bStep(p, ) makes TypeOK (j + 1) false. We can make TypeOK an
inductive invariant by weakening it, replacing the two occurrences of 0.. N
with IN. However, I prefer a stronger, more informative type invariant.

To write the rest of the inductive invariant, we define NumberDone(j)
to be the number of processes that have terminated in state j. The precise
definition is:

NumberDone(j) = #({p € Procs : pc(j)(p) = done})
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The complete inductive invariant, which we call Inv, is defined by:

(3.9) Inv(j) = A TypeOK (j)
AV p € Procs :

(pe(i)(p) = b) = (t(j)(p) < NumberDone(j))
A x(j) < NumberDone(j)

To prove that Inv is an inductive invariant of program Increment, we must
prove I1 and I2. I1 asserts that the initial predicate implies Inv(0), and 12
asserts that the step predicate implies Inv(j) = Inv(j + 1). We will not
consider how these conditions are proved until we have a more convenient
way of writing them.

3.4 Temporal Logic

3.4.1 The Logic of Actions
3.4.1.1 Eliminating State Numbers

There’s an easy way to simplify initial predicates, step predicates, and in-
variants: remove the explicit state numbers. It’s obvious that an initial
predicate is about state number 0, so we can eliminate every “(0)” in it. An
invariant is true for all states, so we don’t have to say which states it’s about.
For a step predicate, we just have to distinguish between v(j) and v(j + 1)
for a variable v. A notation for doing this that dates back at least to the
early 1980s is to replace v(j) by v and v(j + 1) by v’. The initial and step
predicates of program Increment have been rewritten this way in Figure 3.5,
where they’ve been given the names Init and Next. The inductive invariant
(3.9). is also rewritten without the “(j)” and named Inv. (The “(¢)” has
been implicitly removed from the definition of NumberDone.) Make sure
that you understand Figure 3.5 by comparing it with Figure 3.4.

Mathematically, the big leap from Figure 3.4 to Figure 3.5 is removing
the explicit mention of state numbers—for example, writing = instead of
z(j). In Figure 3.4, Procs and z are both ordinary mathematical variables.
The value of Procs is a set of processes and the value of z is a function whose
domain is IN. In Figure 3.5, the value of Proc is a set of processes—the same
set throughout a behavior of the process. However, the value of x depends
on the state of the behavior.

The price of removing explicit state numbers from our formulas is leaving
the domain of ordinary math, with a single kind of variable, and entering a
new kind of math in which there are two kinds of variables: mathematical
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Initial Predicate

Init = ANz =0
At = (p € Procs — 0)
A pc = (p € Procs — a)

Step Predicate
Next £ PgmStep V Stutter

where
PgmStep = 3p € Procs : aStep(p) V bStep(p)
aStep(p) = A pe(p) =a

ANz =z

A t' = (t EXCEPT p — 1)

A pc’ = (pc EXCEPT p > b)
bStep(p) = A pe(p) =b

Az =t(p)+1

ANt =t

A pc = (pc EXCEPT p — done)

Stutter = A Vp € Procs : pe(p) = done
A ('t pc) = (z,t,pc)

Inductive Invariant

Inw 2 A TypeOK
AV p € Procs : (pe(p) =b) = (t(p) < NumberDone)
A z < NumberDone

Figure 3.5: Abstract program Increment and its invariant Inv in simpler

math.
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variables like Procs, whose values are the same in every state of a behavior,
and program variables like = that are implicit functions of the state. Pro-
gram variables like z look weird to mathematicians. In math, the value of a
variable z is fixed. We’ve seen in Chapter 2 that when a mathematician does
something else and introduces a variable z, it’s really a completely different
variable that happens also to be written “z”. Of course, you're familiar with
program variables because they’re the variables of coding languages, whose
values change in the course of a computation.

Since this book is about a science of programs, we will henceforth use the
name variable for program variables. Mathematical variables like Procs will
be called constants. When describing a program mathematically, variables
correspond to what we normally think of as program variables. Constants
are parameters of the program, such as a fixed set of processes. Early coding
languages had constants as well as variables. In modern coding languages,
constants are buried in the code, where they are called static final variables
of an object.

In this book, the variables in pseudocode are explicitly declared, and un-
declared identifiers like Procs are constants. For formulas, the text indicates
which identifiers are variables and which are constants.

In addition to having both variables and constants, the formulas in Fig-
ure 3.5 have primed variables, like z’. An expression that may contain
primed and unprimed variables, constants, and the operators and values of
ordinary math (which means everything described in Chapter 2) is called a
step expression. A Boolean-valued step expression is called an action. The
math whose formulas are actions is called the Logic of Actions, or LA for
short.

3.4.1.2 The Semantics of the Logic of Actions

As we did in defining the semantics of elementary algebra in Section 2.1.5,
we define the meaning [ezp] of an expression of LA to be a mapping on
interpretations. An interpretation assigns values to variables. Since LA has
both constants and variables, there are two parts to an interpretation: an
assignment of values to constants and an assignment of values to variables.

Since constants are ordinary mathematical values, and we have already
discussed the semantics of ordinary math, we will ignore the part of an inter-
pretation for LA that assigns values to them. When discussing a formula of
LA, we assume that there is some fixed interpretation T that assigns values
to the constants. Constants are usually assumed to satisfy some conditions.
For example, the constants M and N of Euclid’s algorithm in Section 1.5
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are assumed to be positive integers, and the constant Procs of program
Increment in Section 3.3 is assumed to be a finite set. We assume that
the fixed interpretation Y satisfies those assumptions. We define |= F for a
formula F' of LA to mean that [F'] is true for all interpretations in which
the assignment of values to the constants satisfies the assumptions.

In LA, there are effectively two kinds of variables: unprimed and primed.
An interpretation of LA assigns values to each of those kinds of variables,
where the values assigned to v and v’ are independent of one another.

We have defined a state to be an assignment of values to program vari-
ables. So, since we're neglecting constants, an interpretation for an LA
formula is a pair of states—the first assigning values to the unprimed vari-
ables and the second assigning values to the primed variables. We have used
the term step to mean a pair of successive states in a behavior. We now let
it mean any pair of states. We will write the step consisting of the states s
and t as s — ¢ rather than (s, t) because that makes it clear that s and ¢
are states.

To define the semantics of LA, we therefore have to define [exp](s — t)
for any states s and t. We have not yet defined any operators for LA,
so the only operators that can appear in an LA expression are ordinary
mathematical operators like + and Tail. They have the usual semantics in
LA. For example

lexpl + exp2](s — t) = [expl](s — t) + [exp2] (s — t)

For an unprimed variable v, we define [v](s — ¢) to equal s(v), the value
assigned to variable v by state s. For a primed variable v/, we define
[v'](s — t) to equal t(v).

We call an LA expression a step expression and an LA formula an action.
For an action A and step s — t, we say that s — ¢ satisfies A or is an A
step iff [A](s — ¢) equals TRUE.

A state expression is an LA expression that contains no primed vari-
ables, and a state formula is a Boolean-valued state expression. For a state
expression exp, the value of [exp](s — t) depends only on s, so we can write
it as Jexp](s).

Because the meaning of an LA expression assigns different values to v
and v/, we can treat v and v’ as two unrelated variables. This means that
we can reason about LA formulas as if constants, unprimed variables, and
primed variables were all different mathematical variables. Thus, for LA as
defined so far, we can regard LA as ordinary math with some mathematical
variables having names like v’ that ending with .
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3.4.1.3 The Prime Operator (')

In Figure 3.5, only variables are primed. In the Logic of Actions, we can
prime not just a variable but any state expression—that is, any expression
containing no primes. For a state expression exp, the value of the step
expression ezxp’ on a step s — t is the value of exp on s. More precisely, the
meaning of exp’ is defined by [exp’](s — t) = [exp](¢). This means that
ezp’ is equivalent to the step expression obtained by priming all the variables
in exp. The priming operator (') can be applied only to state expressions.
In LA, priming an expression that contains a prime is a syntax error. That
means that it is illegal to prime an expression containing a defined symbol
whose definition contains a prime. For example, if e is defined to equal
7’ + 1, then €’ is syntactically illegal.

A constant has the same value in both states of a step. Therefore,
= ¢/ = ¢ is true for any constant ¢. More generally, a constant expression is
an expression with no (primed or unprimed) variable; and = exp’ = exp is
true for any constant expression exp. The bound identifiers of predicate logic
are like ordinary mathematical variables, which means they are treated like
constants in the Logic of Actions. For example, (37 € IN:y = x + 1)’ equals
di € IN:y = 2’ + 1. We therefore call bound identifiers bound constants.
Appendix Section A.3 gives an example of how you can get into trouble by
forgetting that bound identifiers are constants.

The semantics of LA imply that the prime operator distributes over
the operators and constructs of ordinary math—for example, that (S U T)’
equals S U T'. By expanding all definitions and distributing primes in this
way, we obtain a formula in which the prime operator is applied only to vari-
ables. We don’t have to expand all definitions to obtain such a formula. We
need only expand definitions that contain a prime or that appear within a
primed expression and contain a variable. Once we have reached an expres-
sion in which only variables are primed, we can reason about the resulting
expression as if constants, variables, and primed variables were all ordinary
mathematical variables. We therefore need no additional rules for reasoning
about LA formulas.

Section 3.2.2 defined an inductive invariant Inv of a program to be a
state predicate satisfying conditions I1 and 12, which we can restate as:

I1. Inv is implied by the program’s initial state.

I2. If Inv is true in a state, then the program’s next-state predicate implies
that it is true in the next state.
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For program Increment, whose initial predicate is Init and whose next-state
action is Next, these two conditions can be expressed in LA as:

(3.10) = Init = Inv
E Inv A Next = Inv'

The proof of these conditions for program Increment is discussed in Ap-
pendix Section B.1.

Thus far, the correctness properties of programs that have concerned us
have been invariance properties. All the reasoning we have done to verify
that a program satisfies an invariance property is naturally expressed in
LA. The safety property usually proved of a traditional program is that it
cannot produce a wrong answer—which is expressed as the invariance of
the property asserting that the program has not terminated with a wrong
answer. The most popular way of proving such a property is Hoare logic [21].
Appendix Section A.4 explains Hoare logic and its relation to the Logic of
Actions.

3.4.1.4 Action Composition

The Logic of Actions contains another operator that is almost never used
in describing abstract programs and will not play a major role for us until
Section 7.1. However, it does make brief appearances in Sections 4.3.2 and
5.4.4.3, so it is explained here.

For actions A and B, the action A - B is defined to be true of a step
s — t iff there is a state u such that s — u is an A step and u — ¢ is
a B step. If actions A and B describe two pseudocode statements S, and
Sy, then A - B describes the statement S,; S executed by executing S,
followed by S;. For example, the statements labeled @ and b in process p of
program Increment shown in Figure 3.3 are described by actions aStep(p)
and bStep(p) of Figure 3.5, and:®

aStep(p) - bStep(p) = A pe(p) = a

Az = t(p)+1
A t' = (t EXCEPT p — 1)
A pc’ = (pc EXCEPT p — done)

Replacing the actions aStep(p) and bStep(p) with aStep(p) - bStep(p) in the
definition of the next-state action Next of program Increment produces a

SIf you believe that the second and third conjuncts in this formula are in the wrong
order, then you’re thinking in terms of coding languages, not math. Remember that F'A G
is equivalent to G A F.
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program with a coarser grain of atomicity. Choosing the grain of atomicity
of an abstract program involves a tradeoff between making the program
detailed enough to be useful and simple enough to be usable. Section 7.1
addresses this tradeoff using action composition.

The operator “-” is associative, meaning (A-B)-C = A-(B- C) for any
actions A, B, and C'. We can therefore omit parentheses and simply write
A-B-C.

For any action A, we define the action A to be satisfied by a step s — ¢
iff state ¢ can be reached from state s by a sequence of one or more A steps.
In other words:

AT 2 AV (A-AV(A-A- AV (A-A-A-A vV

3.4.2 The Temporal Logic RTLA

In 1977, Amir Pnueli [46] had the idea of using an obscure branch of math-
ematics called temporal logic to express time-dependent properties without
explicitly mentioning times or state numbers. He used a temporal logic
containing the single temporal operator O and operators defined in terms
of O. You can read O as always, but when you become more familiar with
it you’ll probably just call it box. Intuitively, the formula OF asserts that
the formula F' is true at all times. For example, if P is a state predicate,
then OP asserts that P is true in all states of a behavior.

From now on, we will be discussing and using temporal logic. We will
continue to ignore assignments of values to constants, assuming some fixed
interpretation satisfying the assumptions made about those constants.

In the kind of temporal logic Pnueli used, called linear-time temporal
logic, the meaning of a formula is a predicate on behaviors, where a behavior
is an infinite cardinal sequence of states. In other words, a behavior o is
a function from IN to states. We think of o(n) as the state at time n, so
the first state of o is ¢(0). But remember, the only resemblance of the
state number n to a time is that state o(n) does not occur later than state
o(n+1). (In Section 4.4, we’ll see that they could both occur at the same
time.) We’ll sometimes write o as ¢(0) = o(1) — ---.

RTLA is the temporal logic containing the same temporal operators as
Pnueli’s original logic, all defined in terms of O, but having the formulas of
LA as the basic formulas. The formulas of RTLA can all be written as LA
formulas and formulas obtained from them using the operator O and the
usual operators of propositional and predicate logic. The only expressions
of RTLA are formulas. Prime (') can appear only in the basic LA formulas.
It’s illegal to prime a formula containing a O.
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The TLA in RTLA stands for Temporal Logic of Actions. The R stands
for Raw, in the sense of unrefined. We'll see later that RTLA allows us
to write formulas that we shouldn’t write. TLA is the logic obtained by
restricting RTLA to make it impossible to write those formulas. But that’s
a complication we don’t need to worry about now, so we’ll start with the
simpler “raw” logic.

In temporal logic formulas, the operator O binds more tightly than the
operators of propositional logic. For example, OF V G is parsed as (OF)V G.

3.4.2.1 Simple RTLA

In RTLA, the operator O can be applied to any RTLA formula, so we can
write formulas like O(A = OB) where A and B are actions. We will begin
by considering simple RTLA, in which the operator O is applied only to
actions, not to formulas containing O.

A formula of a temporal logic is called a temporal formula. For any
assignment of values to constants, the meaning [F] of a temporal formula
is a behavior predicate—that is, a mapping that assigns Boolean values to
behaviors. An action A is a formula of RTLA, where it is viewed as a
behavior predicate. As a formula of LA, we’ve viewed A as a step predicate.
As a formula of RTLA, we view it as a behavior predicate that is true on a
behavior iff, viewed as a step predicate, it is true of the behavior’s first step.

To state that precisely, let [A] L4 be the meaning of A as an LA formula.
We define its meaning [A]rrr4 as an RTLA formula as follows. For any
behavior o, which equals ¢(0) = o(1) = o(2) — - - -, we define

(3.11) [Alrrra(o) = [Alza(o(0) — o(1))

From now on, [F] means [F] grra for all RTLA formulas, including actions.
We will explicitly write [A] L4 to denote the meaning of A as an LA formula.

For an action A, we define OA to be the temporal formula that is true
of a behavior iff A is true of all steps of the behavior. In other words, we
define the meaning [0A] of the RTLA formula OA by

(3.12) [OA](0) & VnelN : [A]za(o(n) = o(n +1))

Like most logics, RTLA contains the operators of propositional and predicate
logic, where they have their standard meanings. For example, [F' A G](0)
equals [F](o)A[G](c), and [Fi: F](c) equals i : [F](o). Asin LA, bound
identifiers are called bound constants and they act like constants, having the
same value in all states of a behavior. Bounded quantification is defined as
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in ordinary math, with Vi € S: F equal to Vi: (i € §) = F. In temporal
logic, we almost always write such a formula only when § is a constant
expression.

It’s important to remember that a behavior is any cardinal sequence of
states. It doesn’t have to be a behavior of any particular program. Since
any step is the first step of lots of behaviors, it’s obvious that if A is an LA
formula, then }= A is true when A is viewed as an RTLA formula iff it’s true
when A is viewed as an LA formula.

Now let’s return to the description of program Increment in Figure 3.5.
It tells us that a behavior ¢ is a behavior of the program iff (i) the initial
predicate Init is true of its first state o(0) and (ii) the step predicate Next
is true for every step o(n) — o(n + 1) of 0. Condition (i) is expressed
by [Init], since (3.11) tells us that [Init] (o) equals [Init]La(c(0) — o(1));
and since Init is a state predicate, it’s true of a step iff it’s true of the first
state of the step. By (3.12), condition (ii) is expressed as [ONezt]. Thus
(the meaning of) the formula Init A ONext is true of a behavior o iff o is a
behavior of program Increment.

Of course, this is true for an arbitrary program. The behaviors that
satisfy a program with initial predicate Init and next-state action Next
are described by the simple RTLA formula Init A ONext. Any program is
described by an RTLA formula of this form. As promised, we can write any
program as a mathematical formula. It’s an RTLA formula rather than a
TLA formula, and we’ll see that it needs to be modified. But for now, it’s
close enough to the final TLA formula.

By (3.12), the state predicate Inv is true in all states of a behavior iff
Olnw is true of that behavior. That Inv is an invariant of Increment means
that, for any behavior o, if o is a behavior of Increment then Inv is true in
all states of . Thus, that Inv is an invariant of Increment is expressed by
this condition:

(3.13) | Init A ONext = Olnv

Remember that in (3.10) and (3.13), when Init, Next, and Inv are the formu-
las defined in Figure 3.5, = F' means that F' is true for all interpretations
satisfying the assumptions we made about the constants of Increment—
namely, that Procs is a finite set and the implicit assumption that the values
of a, b, and done are different from one another.

In general, the conditions I1 and 12 for showing that a state predicate Inv
is an invariant of a program Init A ONext are expressed in LA by conditions
(3.10). It is an RTLA proof rule that these conditions imply (3.13). When we
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prove a safety property like (3.13), the major part of the reasoning depends
on the definitions of the formulas Init, Next, and Inv. That reasoning is
reasoning about actions, which is formalized by LA. The temporal logic
reasoning, which is done in RTLA, is trivial. Describing the program with a
single formula is elegant. But it is really useful only when verifying liveness
properties, which requires nontrivial temporal reasoning.

Because it’s often forgotten, it is worth repeating that a state is any
assignment of values to variables, and a behavior is any infinite sequence of
states. Even when we are discussing program Increment, “state” means any
state, including states in which z has the value (1/2,1..147). In (3.13),
means true for any behavior, even behaviors in which the initial value of x
is (v/2,1..147). Tt is true for those behaviors because Init equals FALSE for
them (unless (v/2,1..147) happens to equal 0, which it might).

3.4.2.2 The Complete RTLA

Simple RTLA suffices for reasoning about safety properties, but not for
liveness properties. For example, we want to express the liveness property
of program Increment that a process p eventually terminates. Termination
of p means that pc(p) eventually equals done and remains equal to done
forever. In terms of explicit state numbers, where pc(n) is the value of pc
in state number n, this property can be written:

(3.14) 3j€eIN : Vk €N : pc(j + k)(p) = done

To write it without explicit state numbers, we need full RTLA, in which
O can be applied to any RTLA formula, not just to an action. To define
the meaning of all RTLA formulas, we first define o™, for any behavior o
and natural number n, to be the behavior obtained by removing the first n
states from the sequence o. That is, o™ is the behavior

on) = o(n+1)—=o(n+2)—---

so o™ equals i € IN — o (i + n).
For any RTLA formula F', the RTLA formula OF is true of a behavior
o iff it is true of the behaviors o for all n € IN. In other words:
(3.15) [OF](0c) & YnelN: [F](c*")
for any behavior o. When F is an action A, this is the same definition as
(3.12) because the first step o7"(0) — o*™(1) of 0™ is o(n) — o(n +1).
Although O has a simple definition, temporal formulas can be hard to
understand at first. It helps to think of a temporal formula as an assertion
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about the present and future. The state o(n) of a behavior o is the state at
time n, and the behavior o1 is the part of the behavior ¢ that begins at
time n. We can then think of [F](c™™) as asserting that F is true at time
n of behavior o. Thus, [F](c) asserts that F' is true at time 0 of o, and
[OF](o) asserts that F' is true at all times of 0. The formula OF therefore
asserts that F' is true at all times—that is, F' is always true. (Remember
that time n is just some instant of time; it is not n time units after time 0.)

We now drop the [ ]| and think about temporal logic the same way we
think about ordinary math, conflating a formula with its meaning. So, we’ll
think of a temporal formula F' as a Boolean-value function on behaviors.
However, we will still turn to the formal meaning (3.15) of O when it is
useful. Sections 3.4.2.3-3.4.2.8 below examine O and temporal operators
defined in terms of O. They present quite a few tautologies. Understanding
intuitively why those tautologies are true will make you comfortable reading
temporal logic formulas and thinking in terms of them.

3.4.2.3 The O Operator

We first consider some temporal logic tautologies—theorems about arbitrary
temporal formulas. If they are not obvious, rewrite them in terms of the
meanings of the formulas. The first tautology asserts the obvious fact that
if F'is always true, then it is true now:

(3.16) =EOF = F

The next tautology asserts that F' A G true at all times is equivalent to F
true at all times and G true at all times:

(3.17) EO(FAG) = (OF)A(OG)

You should check that (3.17) follows from the definition (3.15) of O and the
predicate-logic tautology:

E VneS:PAQ) = VneS:P)AN(VneS:Q)

Observe that O(F V G) and (OF) V (OG) are not equivalent. For example,
O(FV @) is true of a behavior in which F' is true only in the initial state and
G is false in the initial state and true in all other states. However, neither
OF nor OG is true of that behavior.

We can generalize (3.17) to any conjunction, including an infinite con-
junction—that is, quantification over an infinite set of formulas. If F; is a
temporal formula for all 7 € S, then:

(3.18) EO(WieS: F;) = (VieS:OF,;)
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The next tautology should also be obvious. It asserts that if F' implies G is
true at all times, then F is true at all times implies G is true at all times:

(3.19) EO(F = G)= (OF = 0G)
Perhaps less obvious is this proof rule, which is sort of a converse of (3.16):
(3.20) |= F implies = 0OF

The assertion = F means that F' is true of all behaviors. The assertion
= OF asserts that for any behavior, F' is true of the part of that behavior
starting at any time. But that part of the behavior is itself a behavior, so
= F implies that F' is true of it. If this is not obvious to you, then you
may be thinking of a behavior as a behavior of some program. A behavior
is any infinite sequence of states, so if you remove the first n states of any
behavior, you get a behavior.
From (3.19) and (3.20) we easily derive:

(3.21) EF = G implies OF =0G

This rule lies at the heart of much temporal logic reasoning.
We now examine some additional temporal assertions that can be defined
using 0.

3.4.2.4 Eventually (<)
The operator < is defined to be the dual of O:

(3.22) OF = —-O-F

Like O, the operator <& binds more tightly than the operators of propositional
logic, so OF A G is parsed as (OF) A G. To understand <, we derive the
meaning [OF] of a formula OF from (3.15):

[CF](0) [-O-F](o) by definition of <&

= - [0-F](o) by the meaning of —
= -VnelN : [-F](c™") by (3.15)

= -VnelN : ~[F](ct™) by the meaning of —

dneN : [F](c™™) by the duality relation (2.21)

Hence, OF asserts that F' is true at some time—either now or in the future.
We read < as eventually, where by being eventually true we include the
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possibility of being true only now. Corresponding to the tautologies (3.16)
and (3.17) for O are these tautologies for <:

(323) EF=0F EOFVGEG) = (OFVOQ)

Make sure you understand why they are true from the meaning of & as
eventually. These two tautologies can be derived from (3.16) and (3.17).
For example:

(3.24) (F = OF) = (-(~F) = —~(0—=F)) By logic and the definition of <.
= (O-F = —F) By propositional logic.

and = O-F = —F follows from (3.16). You should convince yourself that
O(F A G) and (OF) A (©G) need not be equivalent. The equivalence of
O(FV G) and OF V OG generalizes to arbitrary disjunctions:

):O(E!ZESFO = (ElZESQFl)

Here are three tautologies relating & and O. The first is obtained by negating
OF and its definition; the second by substituting = F for F' in that definition;
and the third by substituting —F for F' in the first:

(3.25) ’: -OF = O0-F lz -0OF = O-F ): OF = =O=F

They should be obvious from thinking of O as always and < as eventually.
The first two tell us that moving — over a temporal operator O or < changes
O to ¢ and < to O. Note the similarity between 0/ and V /3, a similarity
that arises from the meanings of O and <¢. Another tautology that should
also be obvious from thinking of O and < as always and eventually is:

(3.26) E(OFAOG) = <O(OFAG)

We can express liveness properties with ¢. For example, the assertion
that some state predicate P is eventually true is a liveness property. The
assertion that the program whose formula is F' satisfies this property is
= F = OP. Since the assertion that something eventually happens is a
liveness property, most of the formulas we write that contain & express
liveness.

The equivalence of =OP and O-P for any formula P implies the tau-
tology = OP Vv O-P. This tautology is central to many liveness proofs. To
prove that a program described by formula F' satisfies the liveness property
O P, we must prove = F = OP. The tautology = OP vV O-P and propo-
sitional logic imply that we can prove this by proving = F A O-P = OP.
This is a proof by contradiction, allowing us to use the additional hypothe-
sis O-P, which should be false. For example, if P is a state predicate, this
gives us an invariant - P that can be used to prove other invariants.
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3.4.2.5 Eventually Always (<0O)

Recall that termination of process p of program Increment means that pe(p)
eventually equals done and remains forever equal to done, a property ex-
pressed with explicit state numbers by (3.14). It can be stated as: It’s even-
tually true that pc(p) = done is always true. This is expressed in RTLA as
OO(pe(p) = done). You should check that [CO(pe(p) = done)](o) is equiv-
alent to (3.14) because (o17)* equals otUH*) | so pe(j + k)(p) in (3.14)
equals [pe(p)[ (ot UFH),

We can think of &0 as a temporal operator meaning eventually always.
Convince yourself that this is a tautology:

= OO(FAG) = (OOF) A (OOG)

3.4.2.6 Infinitely Often (O<)

It should now seem natural to think of OO F as meaning always eventually
F is true. If you're not used to thinking about infinite sequences, it may
not be obvious that always eventually is equivalent to infinitely often. So,
let’s prove it.

Theorem 3.1 F is infinitely often true iff it is always eventually true.

Define S, to be the set of times at which F' is true of a behavior o.

1. F is infinitely often true of ¢ iff S, is an infinite set.
PROOF: By definition of infinitely often.
2. S, is an infinite set iff for every time n, there is a time m > n such that
meS,.
PROOF: A set of natural numbers is infinite iff it has no largest element.
3. The statement that for every time n there exists a time m > n such that
m € S, is equivalent to the statement that F' is always eventually true.

PROOF: By the definitions of S, and always eventually.

4. Q.ED.

PRrROOF: Steps 1-3 are of the form A iff B, B iff C, and C iff D, and the
theorem asserts A iff D.

It is usually most helpful to think of O as meaning infinitely often rather
than always eventually. For example, consider the formula OO(F Vv G). It
asserts that F'V G is true infinitely often, which means that F or G is true
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infinitely often. But F' or G is true infinitely often iff at least one of them
is true infinitely often. This yields the following tautology:

(3.27) EOO(FV Q) = (OOF)V (O0G)

The rules for moving — over O and < that are implied by the first two
tautologies of (3.25) yield the following two tautologies. For example, the
first comes from "OCF = O-OF = OO-F .

(3.28) = —-OCF = O0O-F E-OOF = O0-F

3.4.2.7 The End of the Line

You might expect that we can keep constructing more and more compli-
cated operators like O0OCCOOO with sequences of O and . We can’t. Any
such sequence is equivalent to O, &, OO or <O. To see this, first observe
that always always is the same as always. That is, OOF is equivalent to
OF. That’s because Vi,j € IN: P(i + j) is equivalent to V£ € IN : P(k), for
any P.

Similarly, eventually eventually is the same as eventually, so OOF is
equivalent to OF. The equivalence of & and < also follows from the
definition of ¢ and the equivalence of OO and O by:

OOF = -0--0-F = -00-F = -0-F = OF

So, we can only get a new operator by alternating O and <. However, OO
and <0 is as far as we can go because of the following tautologies:

(3.29) E©OCF = OOF EOCOF = ©0F

The first one is obvious if we read GO as eventually infinitely often, because
F is true at infinitely many times iff it is true at infinitely many times after
some time has passed. You can convince yourself that the second is true
by realizing that infinitely often F' always true is equivalent to F being
always true starting at some time. Alternatively, you can show that the
first tautology implies the second by figuring out why each of the following
equivalences is true:

= 00— F = OO0F
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3.4.2.8 Leads To (~)

Although there are no more operators to be defined by directly stacking O
and <, there is another useful temporal operator defined in terms of them:
the operator ~», read leads to, defined by:

F~~ G 2 OF=0G6)

The operator ~ is parsed like =-.
Formula F' ~» G asserts of a behavior that, whenever F' is true, G is true
then or later. You should convince yourself that ~» is transitive, meaning:

E(F~G)AN(G~H) = (F~ H)
Here are two additional tautologies that should be obvious:
(330) E((FVG)~H) = (F~H)AN (G~ H)
E(F~G) ANOG=H) = (F~H)
The first of these tautologies generalizes to:
(3.31) E((3ieS:F;)~H) = VieS: (F;~ H))

Here are three more tautologies involving ~»; try to understand why they’re
true.

(3.32) (a) EOF A (F~ G) = 000G
(b) E(F~ G) = (FAO-G~ G)
(¢) E(FANOG~ H) = (FAOG~ HAOG)

Here’s how I understand them:

(a) F ~ G implies that whenever F' is true, G is true then or later; and
OF implies that F' is always true. Therefore, OF A (F ~» G) implies
G is true infinitely often.

(b) F~ G O(F = <©G) Definition of —.
= O(FA-CG = <G) Propositional logic.
= O(FAD-G = ©G) By (3.25).

= FAO-G~ G Definition of —.

(¢) FAOG ~ H asserts that, for all ¢, if F AOG is true at time ¢, then
H is true at some time u > t; and OG true at time ¢ implies it is still
true at time u, so H A OG is true at time u.
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Observe that tautology (b) justifies a proof by contradiction: to prove that
F true implies G is eventually true, we can assume that G is never true.

Proving ~» properties is at the heart of liveness proofs. For example,
here’s how we prove termination of Fuclid’s algorithm, discussed in Sec-
tion 1.5. The algorithm terminates because while x # y is true, the sum
of z and y keeps decreasing, which can’t continue forever because the algo-
rithm satisfies the invariant that = and y are positive integers. Therefore,
eventually x = y and the algorithm terminates. This argument is formalized
in RTLA as follows.

To prove termination, we must prove that every behavior of the algorithm
satisfies O(z = y). The proof uses this tautology, which follows from the
meanings of the operators O, ~», and ’:

3.33) EOP=Q) = (P~ Q)

The tautology = P VvV O-=P allows us to prove &(x = y) by assuming that
a behavior of the algorithm satisfies O(z # y) and obtaining a contradiction.
Let R; be the state predicate z + y < i. We prove that O(z # y) and the
invariant that z and y are positive integers imply that, for all i > 0, the
program satisfies O(R; = (R;—1)"). By (3.33), this implies R; ~ R;_;. By
the transitivity of ~» and mathematical induction, this implies R4+ n ~ Ryg.
Since the program implies that Rj;iy is true in the initial state, this im-
plies that &Ry is true, contradicting the invariant that x and y are always
positive.

3.4.2.9 Warning

Although elegant and useful, temporal logic is weird. It’s not ordinary math.
In ordinary math, any operator Op we can define satisfies the condition,
sometimes called substitutivity, that the value of an expression Op(ey, ..., ey)
is unchanged if we replace any e; by an expression equal to e;. If Op takes
a single argument, substitutivity means that

(3.34) = (exp1 = expa) = (Op(exp1) = Op(expsa))

is true for any expressions exp; and exps. For example, (3.34) is true
for the operator Tail. However, the temporal operator O is not substi-
tutive. For example let exp1 and exps be the state predicates z = 0 and
y = 0, respectively; and let o be a behavior such that for each 7 € IN, the
state o(j) assigns the value 0 to z and the value j to y. Then exp; and
exps both equal TRUE for o because they are both true for ¢(0). Formula
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Oexp; is true for o because © = 0 is true in all its states, but Oexpsy is
false for o because y = 0 is true only in the first state o(0). Hence, the
value of the formula (ezp; = exps) = (Oexp; = Qexpy) for this behavior
is (TRUE = TRUE) = (TRUE = FALSE), which equals FALSE. The operator
" (prime) is similarly not substitutive, so it too is weird. This weirdness
affects all temporal logics and makes temporal logic reasoning tricky.

3.5 TLA

3.5.1 The Problem

There is something terribly wrong with our RTLA descriptions of abstract
programs, because there is something terribly wrong with the descriptions
like the one in Figure 3.4 that we wrote using explicit step numbers. To
see why, let’s return to the discussion in Section 3.1 of how astronomers
describe a planet orbiting a star. As explained there, the mathematical
description of the orbiting planet is best thought of as describing a universe
containing the planet, saying nothing about what else is or is not in the
universe. In particular, that description applies just as well to a universe
in which there is a spacecraft close to the star that orbits it very fast—
perhaps going around the star 60 times every time the planet goes around
it once. Since the spacecraft is too small to affect the motion of the planet,
we would obtain a description of the system composed of the planet and the
spacecraft by adding (conjoining) a description of the spacecraft’s motion
to the description of the planet’s motion. The description of the planet’s
motion remains an accurate description of that planet in the presence of
the spacecraft. It would be crazy if we had to write different formulas to
describe the planet because of the spacecraft that has no effect on it.

Now consider the descriptions of abstract programs we’ve been writing.
In particular, consider an RTLA formula HM describing how the values of
the hour and minute displays of a 24-hour clock change. Using the variables
hr and min to describe the current hour and minute being displayed, we
might define HM to equal Init A ONext, where:

(3.35) Init = (hr =0) A (min = 0)
Next = A min’ = (min + 1) %60
A hr' =1F min =59 THEN (hr+1)%24 ELSE hr

But suppose that the clock also displays seconds. The RTLA formula HMS
that also describes the second display might use a variable sec to describe
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that display. A behavior ¢ allowed by HMS would not be allowed by HM
because HM requires every step to change the value of min, while ¢ must
change the value of sec in every step and the value of min in only every 60"
step.

It is just as crazy for an abstract program describing an hour-minute
clock not to describe a clock that also displays seconds as it is for a descrip-
tion of a planet’s motion no longer to describe that motion because of a
spacecraft that doesn’t affect the planet. It means that anything we’ve said
about the hour and minute display might be invalid if there’s also a second
display. And it doesn’t matter if the minute display is on a digital clock on
my desk and the second display is on a phone in my pocket. More generally,
it means if we’ve proved things about completely separate digital devices
and we look at those two devices at the same time, nothing we’ve proved
about them remains true unless those devices are somehow synchronized to
run in lock step. The more you think about it, the crazier it seems.

3.5.2 The Solution

To figure out how to fix this problem, let’s first see where we went wrong.
It happened in Section 3.2.1, when we went from a sequence tg, t1, to, ...
of times to a sequence 0, 1, 2, ... of state numbers. We were writing a
description of a particular system. But math and science don’t describe a
system; they describe a universe containing that system. And that universe
can contain many systems. A different system might lead to a different
sequence ug, u1, u2, ... of times, with only ¢y and ug equal. Our error
was converting two possibly different times #; and u; into the same state
number. The result was that when we thought we were writing a description
of a particular system, we were actually writing a description of a universe
in which the values of all variables, including ones describing other systems,
could change only when the variables of that particular system changed.
You might think that because the error occurred when we were throwing
away times, we need to represent the time at which a state holds, not just
a state number. Fortunately, there is a simpler solution. It’s the one we
used to eliminate finite behaviors and consider only infinite behaviors. We
observed that we could do that by adding stuttering steps at the end of a
finite sequence of states—steps that just repeat the previous state of the
program. Eliminating finite behaviors was not simply a matter of conve-
nience. The real reason to do it was to eliminate one source of craziness.
Since a behavior is not just a behavior of a particular program but a behav-
ior of the entire universe, a finite behavior is one in which everything in the



DESCRIBING ABSTRACT PROGRAMS 107

universe stops changing. The description of a halting program execution as
a finite behavior therefore asserts that the entire universe halts when the
program does. Those infinitely many stuttering steps, in which the value
of no variable of the program changes, allows other programs’ variables to
keep changing.

We can add those stuttering steps because of the observation that the
conversion from times to state numbers requires that a program variable
be allowed to change only at time ¢; for some ¢. It does not require that
any variable does change at that time. The mistake was writing descriptions
that, until the program halts, requires some variable to change value at each
time ¢;. Instead, we should have added to the sequence of times ¢; times at
which no program variable changes. Adding such a time adds a step in which
other variables describing other programs can change while the program’s
variables remain unchanged. Thus, if the description allows a behavior o,
then it should allow the behavior obtained by inserting stuttering steps of
the program in o. This is easy to do. For the description of the hour/minute
display, we just change the definition of HM to

HM = Init A O(Next V ((hr' = hr) A (min' = min)))
We can write this formula more compactly as
(3.36) HM = Init A O(Next \V ((hr, min)’ = (hr, min)))

because (hr,min)’ equals (hr’,min’), and two tuples are equal iff their
corresponding components are equal.

We can similarly fix every other example we’ve seen so far by changing
the next-state action Next in its RTLA description to NexztV (v' = v), where
v is the tuple of all variables that appear in the RTLA formula. Since this
will have to be done all the time, we abbreviate AV (v' = v) as [4], for any
action A and state expression v.

We can add stuttering steps to a pseudocode description of an algorithm
by adding a separate process that just takes stuttering steps. However,
we won’t bother to do this. We will just consider all pseudocode to allow
stuttering steps.

When HM is defined by (3.36), if HMS is true of a behavior then HM
is also true of the behavior. This remains true when HMS is modified to
allow stuttering steps. Thus, HMS implements HM , and = HMS = HM is
true. Implementation is implication. How elegant!

There is an apparent problem with formula HM of (3.36). It allows
behaviors in which the program takes a finite number of steps (possibly zero



DESCRIBING ABSTRACT PROGRAMS 108

steps) and then takes nothing but stuttering steps. In other words, it allows
behaviors in which the clock stops. Most computer scientists will say that
we should never allow behaviors in which an abstract program stops when
it is possible for it to continue executing. This is because they are used
to thinking about traditional programs. In many cases, we don’t want to
require a concurrent abstract program to do something just because it can.

Never stopping is a liveness property. Taking only steps satisfying [Next],
is a safety property. My experience has taught me that we should describe
safety properties separately from liveness properties because we reason about
them differently and we should think about them differently. Formula HM
describes the safety property that the hour-minute clock should satisfy. We
will see later how we conjoin a liveness property to HM if we want to require
the clock to run forever. It is a feature not a problem that this definition of
HM asserts only what the clock may do and not what it must do.

In general, the safety property of an abstract program is written in the
form Init A O[Next], , where Init is the initial predicate and [Next], is the
next-state action. The formula O[Next|, always allows stuttering steps be-
cause [Next], has the form ...V (v' = v), and v = v allows stuttering steps.
However, v = v allows lots of non-stuttering steps. In particular, it allows
steps in which any variable that does not appear in v can have any values
in the two states of the step. To describe an abstract program, the state ex-
pression v in O[Next], must ensure that v' = v allows only steps that do not
change any of the program’s variables. Therefore, unless stated otherwise,
in a formula of the form O[Next|, where Next is the next-state action of a
program, the subscript v is assumed to be the tuple of all program variables.
(However, that subscript need not be called v.)

3.5.3 Stuttering Insensitivity

We have seen that the safety property of an abstract program should have
the form Init A O[Next],, so it allows stuttering steps. But what can we say
in general about formulas for describing systems or abstract programs?
Stuttering steps are created by adding extra times t; at which we report
the values of a program’s variables. A stuttering step does not represent the
program doing anything. It’s just a mathematical way to allow the descrip-
tions of the universe with which we describe different abstract programs to
be made consistent with one another. Therefore, any assertion we make
about a behavior of an abstract program should not depend on whether we
add or remove steps that leave the program’s variables unchanged. Since the
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assertion depends only on the values a behavior assigns to the program’s vari-
ables, this condition is satisfied iff the assertion does not depend on whether
we add or remove steps that leave all variables unchanged. We’ve used the
term stuttering step to mean a step that leaves a program’s variables un-
changed. We will now call such a step a stuttering step of the program. We
define a stuttering step to be a step that leaves all variables unchanged.

A sensible predicate F' on behaviors should satisfy the condition that the
value of [F](c) is not changed by adding stuttering steps to, or removing
them from, a behavior 0. This means that the value of [F](o) is not changed
even if an infinite number of stuttering steps are added and an infinite
number removed. (However, the behavior must still be infinite, so if o ends
in an infinite number of stuttering steps, those steps can’t be removed.) A
predicate on behaviors satisfying this condition for all behaviors o is called
stuttering insensitive, or SI for short. When describing abstract programs
or the properties they satisfy, we should use only SI predicates on behaviors.

To define SI precisely, we first define fj(o) to be the behavior obtained by
removing from the behavior ¢ all stuttering steps except those belonging to
an infinite sequence of stuttering steps at the end. Recall that Tail(o) is the
behavior obtained from ¢ by removing its first state and o is concatenation
of sequences. For a state s, let’s define (s —) to equal ¢ € {0} — s, the
cardinal sequence of length 1 whose single item is s. Here is the recursive
definition of .

(3.37) h(o) = 1F VielN : o(i) = 0(0)
THEN o
ELSE IF o0(0) = o(1) THEN f§(Tail(o))
ELSE (0(0) =) o f( Tail(o))

A predicate on behaviors is defined to be SI iff, for any behavior o, the
predicate is true of o iff it is true of f(o). SI is a semantic condition—that
is, a condition on the meanings of formulas. Since we are conflating formulas
and their meanings, saying that a formula F' is SI means that [F] is SI.

We have been using the term property informally to mean some condition
on the behaviors of a system or abstract program. We now define it to mean
an SI predicate on behaviors. Behavior predicate still means any predicate
on behaviors, not just SI ones.

3.5.4 The Definition of TLA

We now define TLA to be a language that is a sublanguage of RTLA in which
every formula is a property—that is, an SI formula. Defining a language
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means giving syntactic rules for a formula to belong to the language.

We begin by defining a state predicate to be a TLA formula. Viewed as a
temporal formula, a state predicate is SI because it depends only on the first
state of a behavior, which isn’t changed by adding or removing stuttering
steps.

The operators of propositional logic applied to SI formulas produce
SI formulas. For example, if adding or removing stuttering steps doesn’t
change whether formulas F' and G satisfy a behavior, then they don’t change
whether F' A G satisfies the behavior. So we let TLA include all formulas
obtained by applying propositional logic operators to TLA formulas. Simi-
larly, we can let TLA include all formulas obtained by applying unbounded
quantifiers and quantifiers bounded by a state expression to a TLA formula.
For example, 3z € S: F is a TLA formula if F' is one and S is a state
expression.

It’s easy to find actions A that, when viewed as a temporal formula,
are not SI. For example, 2’ # z is not SI because if o is a behavior that
satisfies ' # z, then the behavior obtained by adding a stuttering step to
the beginning of o doesn’t satisfy it. However, the formula O[A], is SI for
any action A and state expression v, so we let TLA contain all such formulas.

The formula O[A], asserts that an action, namely one of the form [A4],,
is true of all steps of a behavior. For reasoning about liveness, we will need
to assert that an action is eventually true in some step of a behavior. The
formula <& A is not SI for an arbitrary action A because if A is true on
some stuttering step, then & A might be false on a behavior o and true on
a behavior obtained by adding such a stuttering step to o. However, if A
does not allow stuttering steps, then <A is SI. In particular, the formula
O(A N (v # v)) is SI for any state expression v. We define (A), to equal
AN (v # v); and we let TLA contain all formulas G(A),, for any action A
and state expression v.

You can convince yourself that adding or removing stuttering steps
from a behavior doesn’t change whether it satisfies ¢(A),. However, since
—0[—A4], is SI, the following theorem shows that <(A4), is SI:

(3.38) k£ O(A), = -O[A],

This equivalence follows from the definition of & and the following assertion,
which can be proved by propositional logic from the definitions of [...], and

(.. )
E (A)y = —[-4],
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From (3.38) we see that =<(A4), is equivalent to O[—A],. This means that
an (A), step never occurs in a behavior iff every step of the behavior is a
[-A], step. This fact is used in proofs by contradiction of formulas of the
form G(A),.

The only temporal operator we have defined besides O and < is ~. We
define F' ~ &(A), to be a TLA formula if F' is one, A is an action, and v
is a state expression. This formula is SI, since expanding the definition of
~» in it produces what we have already defined to be a TLA formula.

Combining all this, we see that a TLA formula is one of the following:

e A state predicate.
e Obtained by applying propositional logic operators to TLA formulas.

e Vd¢:F or Vdc e S: F where V3 is V or 4, for a constant ¢, a TLA
formula F'; and a state expression §.

o O[A]l,, O(A)y, or F~» O(A),, for an action A, a state expression
v, and a TLA formula F.

Abstract programs and the properties they satisfy should be TLA for-
mulas. However, we can use RTLA proof rules and even RTLA formulas
when reasoning about TLA formulas. For example, we can prove that Inv
is an invariant of Init A O[Nezt], by substituting [Next], for Nezt in the
RTLA proof rule that (3.10) implies (3.13). This yields the following rule:

= (Init = Inv) A (Inv A [Next], = Inv')
implies  |= Init A O[Next], = Olnv

In this rule, the first = means validity in LA while the second = means
validity in TLA. A feature of TLA is that as much reasoning as possible is
done in LA, which becomes ordinary mathematical reasoning when the nec-
essary definitions are expanded and primes are distributed across operators
so only variables are primed.



Chapter 4

Safety, Liveness, and Fairness

4.1 Safety and Liveness

4.1.1 Definitions

Safety and liveness properties have been described intuitively as specifying
what the program is allowed to do and what it must do. To define them
precisely, we begin by observing that they have these characteristics:

Safety If a behavior doesn’t satisfy a safety property, then we can point to
the place in the behavior where it violates the property. For example,
if a behavior doesn’t satisfy an invariance property, it violates the
property in the first state in which the invariant is false.

Liveness We have to look at an entire infinite behavior to see that it doesn’t
satisfy a liveness property. For example, we can’t see that the property
z eventually equals 42 is violated by looking at a finite part of the
behavior.!

This characterization was turned into precise definitions of safety and live-
ness for arbitrary behavior predicates by Alpern and Schneider [3]. Since
we’re interested only in properties, we will use a somewhat simpler definition
of safety. But first, we need a few preliminary definitions.

We call a finite, nonempty cardinal sequence of states a finite behavior.
(A behavior, without the adjective finite, still means an infinite cardinal

'Remember that a behavior means any infinite sequence of states, not just one that
satisfies some program. If we know that a behavior satisfies the program, we can often tell
that O(z = 42) is false by looking at the behavior predicate that describes the program,
without looking at the behavior at all.

112
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sequence of states.) We'll write a finite behavior p as p(0) — --- — p(n).
A nonempty finite prefix of a behavior is a finite behavior. We define the
completion p' of a finite behavior to be the behavior obtained by repeating
the last state of p infinitely many times—that is, adding infinitely many
stuttering steps. A finite behavior p is defined to satisfy a behavior predicate
iff its completion p' satisfies it. We can now precisely define safety and
liveness.

Safety A property F is a safety predicate iff it satisfies the following con-
dition: A behavior satisfies F' iff every nonempty finite prefix of the
behavior satisfies F'.

Liveness A property F' is a liveness property iff every finite behavior is the
prefix of a behavior that satisfies F'.

A state predicate is a safety property because it is satisfied by a behavior
iff the state predicate is true on the initial state, and a behavior and all its
nonempty prefixes have the same initial state. The formula O[A], is a safety
property for any action A and state expression v; here is the proof that every
nonempty finite prefix of a behavior o satisfies O[A], iff o satisfies O[A],.

1. ASsuME: Every nonempty finite prefix of o satisfies O[A],.
PROVE: o satisfies O[A4],

PROOF: o satisfies O[A], iff every step of o satisfies [4],, and every step of
o is a step of some finite prefix of o, so it satisfies O[A], by the assumption.

2. ASSUME: o satisfies O[A],
PROVE: Every nonempty finite prefix of o satisfies O[A],.

PROOF: Every step of a nonempty finite prefix of ¢ is either a step of
o, so it satisfies [A], by the assumption, or it is a stuttering step, which
satisfies [A], by definition of [.. .],.

3. Q.E.D.
ProoOF: Obvious, by steps 1 and 2.

It also follows easily from the definition of safety that the conjunction of
safety properties is a safety property. Therefore, as expected, the formula
Init A O[Nezt], that we have been calling the safety property of a program
is indeed a safety property.

The property that asserts that a program halts is a liveness property.
That property is true of a behavior ¢ iff 0 ends with infinitely many steps
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that leave the program’s variables unchanged. It’s a liveness property be-
cause every finite behavior p is a prefix of its completion p', which satisfies
the property.

Safety and liveness are conditions on properties, which are SI behavior
predicates. When we say that a TLA formula O[A], is a safety property, we
are conflating the formula with its meaning. We should remember that it’s
actually [O[A],] that is the safety property.

4.1.2 A Completeness Theorem

TLA is quite simple, adding only the two operators ' (prime) and O to
ordinary math. In theory, this simplicity makes it quite inexpressive. For
example, here is a property Fis that neither TLA nor RTLA can express:
the value of z must equal 1 before it can equal 2. It’s expressed in terms of
explicit states as:

(41) Flo = VjelN: (z(j)=2) = FkeIN: (k<j)A(z(k)=1)

This behavior predicate is a property because it’s SI; adding or removing
stuttering steps doesn’t affect whether a behavior satisfies it. Property Fio
is a safety property because it’s not satisfied by a behavior o iff there’s a
point in o at which it’s violated—mnamely, a state o(j) in which z = 2 and
z # 1 in all the states 0(0), ..., o(j — 1).

If TLA is inexpressive, how can we describe programs with it? The
answer is, by using variables. We can express Fis as an abstract program
described by a TLA formula Sio if we add a Boolean-valued variable, let’s
call it y, whose value is TRUE iff z equals 1 or has previously equaled 1. We
let the initial predicate Init of S1o assert that z # 2 and that y = TRUE iff
r = 1. The next-state relation Next allows z’ to equal 2 only if y = TRUE,
and it sets y to TRUE if x = 1. Here are the definitions:

(42)  Si12 = Init A O[Newt](yy)
Init = (z#£2) A (y=(z=1))
Next = AN(E'=2)=y
ANy = (yV(z=1))

It’s not obvious in what sense formula Sio expresses property Fia, since
S12 contains the variables  and y while Fio describes only the values of z.
Intuitively, S12 makes the same assertion as Fig if we ignore the value of .
Section 6.1 describes a TLA operator 3 such that 3y : S1o means Syo if we
ignore the value of y. We'll then see that [y : S12] equals Fi2. However,
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there’s no need to introduce 3 here. The relevant condition that S5 satisfies
is that if G is any TLA formula that does not contain the variable y, then

):F12:>[[G]] iff )2812:>G

The idea of adding a variable to express a property works in general.
We state it now only for safety properties. We can’t express every safety
property as a TLA formula. A formula is a finite string of finitely many
symbols, and there are only a countable number of such strings; but there are
uncountably many safety properties. (For example, there are uncountably
many real numbers, so there are uncountably many properties asserting that
the initial value of z is a particular real number.) What we can show is that
any safety property (which is a predicate on behaviors) that can be described
by a mathematical formula—that is, by a formula of ZF—can be expressed
as a TLA formula. We do that by showing that if the mapping F from
behaviors to Boolean values is a safety property, then we can use F' to write
a TLA formula that describes it the way S12 describes Fis in our example.
One condition satisfied by a mathematical formula is that it contains only
a finite number of variables, and its value depends only on the values of
those variables. Remember that we are assuming that the language LA for
writing actions contains all the operators of ZF, including the operators on
sequences described in Section 2.3.2.

The theorem is expressed with the convention of letting a boldface iden-
tifier like x be the list z1, ..., =, of subscripted non-bold versions of the
identifier, for some n. Thus, (x) is the tuple of those identifiers. The theo-
rem is a special case of Theorem 4.8 in Section 4.2.7 below, so the proof is
omitted.

Theorem 4.1 Let x be the list x1, ..., z, of variables and let F' be a safety
property such that F(o) depends only on the values of the variables x in a
behavior 0. There exists a formula S equal to Init AO[Next]y ), where Init
and Next are defined in terms of F, y is a variable not among the variables
x, and the variables of S are x and y, such that = F = G iff = [S] = G,
for any property G.

This theorem is a completeness result, showing that TLA can express as an
abstract program any safety property that can be expressed semantically.
While this shows that there is no fundamental lack of expressiveness in
TLA, it is of little practical significance. The proof assumes a description
of the property F' and uses it to write F' as an abstract program. If there
were a better way to describe properties mathematically than with abstract
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programs, we should use it. There are other temporal logics that can express
the simple property Fio with a formula that’s easier to understand than S1o.
However, S5 is not hard to understand, and abstract programs are the only
practical way I know to express all the properties of concrete concurrent
programs that we need to describe.?

4.1.3 The Operator C

We now define the operator C so that C(F) is the strongest safety property
implied by F, for any property F. Remember that property G stronger
than property H means every behavior satisfying G satisfies H—that is,
= G = H. The operator C is not part of the TLA language; we do not
use it to write abstract programs. What we do is show that under certain
conditions some G equals C(F) for some other program F. It would be
better to write that [G] equals C([F]), but we won’t bother because we
regularly conflate a formula and its meaning.

If we want C(F') to be the strongest safety property implied by F, it
should be satisfied by the behaviors satisfying F' plus the fewest additional
behaviors needed to make it a safety property. The appropriate definition
is: A behavior o satisfies C(F') iff every finite prefix of o is a prefix of a
behavior that satisfies F. The following theorem shows that this is the
correct definition. Its proof is in the Appendix.

Theorem 4.2 If F' is a property, then C(F') is a safety property such that
= F = C(F) and, for any safety property G, if = F' = G then =C(F) = G.

Alpern and Schneider proved that every property is the conjunction of a
safety property and a liveness property.® They actually proved this stronger
result, whose proof is in the Appendix.

Theorem 4.3 Every property F is equivalent to C(F') A L for a liveness
property L.

We have been describing abstract programs by formulas of the form
Init A O[Next],, which are safety properties. As we’ve observed, like any
safety property, this formula allows behaviors that halt at any point in the
behavior. We usually don’t want to allow such behaviors, so we must conjoin
a liveness property to this formula to describe most abstract programs. For

2Remember that property means predicate on behaviors. There are many conditions
we want programs to satisfy besides properties.
3Their result was stated for arbitrary behavior predicates, not properties.
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example, we can rule out behaviors of program Increment that don’t halt
prematurely with the liveness property

V' p € Procs: &(pe[p] = done)

However, we’ll see later why that’s not a good liveness property to use.

There’s another method of describing safety and liveness that helps me
understand them intuitively. It’s based on topology. The method and the
necessary topology are explained in Appendix Section A.5.

4.1.4 What Good is Liveness?

Safety predicates constrain the finite behavior of a system. They describe
what must be true of finite prefixes of a behavior. Liveness properties say
nothing about finite prefixes; they describe what must be true if the system
runs forever. Since we don’t live forever, why should be care about liveness
properties?

Liveness is useless in theory but useful in practice. Consider the liveness
property required of a traditional program: it eventually terminates. In
theory, that’s useless because it might not terminate in a billion years. In
practice, proving that a program will terminate within a given amount of
time isn’t easy. Proving that it eventually terminates is easier, and it is useful
because the program is certainly not going to terminate soon enough if it
never does. But proving liveness provides more than that. Understanding
why a program eventually terminates requires understanding what it must
do in order to finish. That understanding helps you decide if it will terminate
soon enough. This applies to other liveness properties as well.

Using a model checker doesn’t give you the understanding that you get
from writing a proof. However, checking liveness properties is a good way to
detect errors—both in the program you intended to write and in what you
actually wrote. A program that does nothing satisfies most safety properties,
and an error in translating your intention into mathematics might disallow
behaviors in which the program fails to satisfy a safety property. Checking
that the program satisfies liveness properties that it should can catch such
errors, as well as errors in the program you wanted to write.

4.2 Fairness

Expressing mathematically the way computer scientists and engineers de-
scribed their algorithms and programs led us to describe the safety property
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satisfied by an abstract program with the formula Init A O[Next],, where v
is the tuple of all the program’s variables. We must conjoin to that formula
another formula to describe the program’s liveness property. To see how
this should be done, we first examine how scientists and engineers expressed
liveness.

4.2.1 Traditional Programs and the Enabled Operator [E

We start with traditional programs. It was assumed, usually without need-
ing to be stated explicitly, that a program kept executing statements until it
terminated. If termination is expressed by pc = done, then this assumption
can be stated as the requirement that when pc # done, a Next step must
eventually occur. This is expressed by the TLA formula

(4.3) (pc # done) ~ (Next),

The (...), is a bit of a nuisance, but it’s required by TLA to prevent a
liveness property from being satisfied by a stuttering step, which would make
no sense. Usually, the next-state action Next does not permit stuttering
steps, so (4.3) is equivalent to the RTLA formula (pc # done) ~» Neat .

Formula (4.3) assumes a particular way of expressing termination. In
general, termination of a traditional program means it’s no longer possible
for the program to take steps. We should replace (4.3) by E ~» (Newt),,
where F is a state predicate that is true in a state iff it’s possible to take a
(Next), step in that state. We write that state predicate E as [E(Next),,
where [E is read enabled.

In general, for any action A, we define [E(A) to be the state predicate
that is true in a state s iff there exists a state ¢ such that s — ¢ is an A
step. In other words, [E is an LA operator, where for any action A the state
predicate [E(A) is defined by:

[EA)](s) = 3t : [A](s — )

In the common case when A has the form (B),, we omit the parentheses
and write simply [E(B),. The liveness property assumed of a traditional
program whose safety property is described by the formula Init A O[Next],
is [E{Next), ~ (Next), .

4.2.2 Concurrent Programs

In traditional programs, when the program hasn’t terminated there is just
one program statement that can be executed. In multiprocess programs,
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it is usually possible for there to be multiple statements that can be exe-
cuted, each in a different process. Moreover, a process can stop not just
because it has terminated, but because it is waiting for another process to
do something. The liveness property [E(Next), ~ ( Next), ensures that the
program keeps executing statements as long as some process hasn’t halted.
It is satisfied if one process keeps executing statements. It allows other pro-
cesses to halt, even if they could keep executing statements. Those other
processes are said to be starved.

It was generally accepted that processes should be treated “fairly”. Mul-
tiprocess programs were usually executed on computers having fewer proces-
sors than there were processes—for many years, usually just a single proces-
sor. It was sometimes proposed that fairness should guarantee the stronger
condition that each process get a fair share of processor time. However, it
came to be generally accepted that fairness should not specify how long (in
terms of program steps) a process that can execute a statement might wait
before executing it. Therefore, fairness came to mean simply that no process
should be starved.

In a program with a set Procs of processes, the next-state action is
defined by

Next = 3p e Procs : PNext(p)

where PNezt(p) is the next-state action of process p. The obvious general-
ization of the liveness requirement for a traditional program suggests that
fairness for all the processes in a multiprocess program should mean:

(4.4) Vp € Procs : [E{PNext(p)), ~ (PNext(p) )y

However, this is not the way fairness should be expressed, and it is not an
appropriate liveness property for multiprocess programs. To see why, we
consider mutual exclusion algorithms.

4.2.2.1 Mutual Exclusion

The concept of fairness in a concurrent program first appeared (though not
by that name) in Edsger Dijkstra’s seminal 1965 paper that launched the
study of concurrent algorithms [9]. That paper defined mutual exclusion
and presented the first algorithm that implemented it.

In mutual exclusion, we assume a set of processes that each alternately
executes two sections of code called the noncritical and critical sections. A
mutual exclusion algorithm must ensure that no two processes can be execut-
ing their critical sections at the same time. For example, the processes may
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variables ... ; global variables
process p € Procs
variables pc = ncs, ... ;  process-local variables
while TRUE do
ncs: skip ;  noncritical section
wait: - waiting section
cs:  skip ; critical section
exit: . exiting section
end while

end process

Figure 4.1: The outline of a mutual exclusion algorithm.

occasionally print output on the same printer, and two processes printing
at the same time would produce an unreadable mixture of the two outputs.
To prevent that, the processes execute a mutual exclusion algorithm, and a
process prints only when in its critical section.

The outline of a mutual exclusion algorithm is shown in Figure 4.1,
where Procs is the set of processes. We don’t care what the processes do
in their noncritical and critical sections, so we represent them by atomic
skip statements labeled ncs and c¢s that do nothing when executed except
change the value of pc. The nontrivial part of the algorithm consists of the
two sections of code, the waiting and exiting sections, that begin with the
labels wait and ezit. Fach of those sections can contain multiple labeled
statements, using variables declared in the two variables statements.

The safety property that a mutual exclusion algorithm must satisfy is
that no two processes are executing their critical sections at the same time—
meaning that pc(p) and pe(q) cannot both equal ¢s for two different pro-
cesses p and ¢. This is an invariance property. A cute way of expressing it
compactly is:

(4.5) O(Yp,q€ Procs : (p# q) = ({pc(p),pc(q)} # {cs}))

We will not yet state a precise liveness condition a mutual exclusion algo-
rithm should satisfy. All we need to know for now is that if some processes
enter the waiting section, they can’t all wait forever without entering the
critical section.

Most people viewing the outline in Figure 4.1 will think this is an un-
realistic description of a mutual exclusion algorithm because, by describing
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variables z = (p € {0,1} — FALSE) ;
process p € {0,1}

variables pc = ncs ;

while TRUE do

ncs: skip ;

wait: x[p] : = TRUE ;
w2: await ~z[l — p] ;
cs:  skip ;

exit: x[p] := FALSE

end while
end process

Figure 4.2: The unacceptable mutual exclusion algorithm UM.

the execution of the critical section with a single skip step, we are assuming
that the entire critical section is executed as a single step. Of course, we
realize that this isn’t the case. It no more says that the critical section is
executed as a single step than our description of an hour-minute clock says
that nothing else happens between the step that changes the clock’s display
to 7:29 and the step that changes it to 7:30. Just as 59 changes to a seconds
display can occur between those two steps, process p can print the entire
Bhagavad Gita while pc(p) equals pc. A mutual exclusion algorithm simply
describes all that printing as stuttering steps of the algorithm.

Figure 4.2 describes a program named UM, which is an abbreviation of
Unacceptable Mutual exclusion algorithm. Technically, it’s a mutual exclu-
sion algorithm because it satisfies property (4.5) with Procs equal to the
set {0, 1} of processes. But for reasons that will be discussed later, it isn’t
considered to be an acceptable algorithm.

This pseudocode program is the first one we’ve seen with an await state-
ment. For a state predicate P, the statement await P can be executed only
when control is at the statement and P equals TRUE. We could write the
statement o : await P as:

a: if -P then goto a end if

Executing this statement in a state with P equal to TRUE just moves control
to the next statement. Executing it in a state with P equal to FALSE does
not change the value of any program variable, so it’s a stuttering step of the
program. Since a stuttering step is always allowed, executing the statement
await P when P equals FALSE is the same as not executing it. So, while we
can think of the statement await P continually evaluating the expression
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P and moving to the next statement iff it finds P equal to TRUE, mathe-
matically that’s equivalent to describing it as an action A such that [E(A)
equals (pc = a) A P.

This is also the first pseudocode we’ve seen with explicit array variables.
An array variable z is an array-valued variable, where an array is a function
and z[p] just means z(p). We've already seen implicit array variables—
namely, the local variables ¢ and pc of program Increment are represented
by function-valued variables in Figure 3.5. I have decided to write z[p] in-
stead of z(p) in pseudocode to make the pseudocode look more like real code.
However, the value of an array variable can be any function, not just a finite
ordinal sequence; and we write z(p) instead of z[p] when discussing the pro-
gram mathematically. As we’ve seen in Figure 3.5, an assignment statement
z[p] = ... is described mathematically as 2’ = (z EXCEPT p > ...).

Algorithm UM is quite simple. The processes communicate through the
variable z, with process p writing to z(p). The initial value of z(p) for each
process p is FALSE. To enter the critical section, process p sets z(p) to TRUE
and then enters its critical section when z(1 — p) (the array element written
by the other process) equals FALSE.

It’s easy to see that the two processes cannot be in their critical sections
at the same time. If they were, the last process p to enter its critical section
would have read z(1 — p) equal to TRUE when executing statement w2,
so it couldn’t have entered its critical section. Since mutual exclusion is an
invariance property, it can be proved mathematically by finding an inductive
invariant that implies mutual exclusion. You can check that the following
formula is such an inductive invariant of UM:

(4.6) N TypeOK
AV pe{0,1} : A (pe(p) € {w2,cs}) = z(p)
A (pe(p) = cs) = (pe(l = p) # cs)
where TypeOK is the type-correctness invariant:

TypeOK = A z € ({0,1} — {TRUE, FALSE})
A pe € ({0,1} — {ncs, wait, w2, cs, exit})

Let UMSafe be the safety property described by the pseudocode. We
want to conjoin a property UMLive to UMSafe to state a fairness require-
ment of the program’s behaviors. Let’s make the obvious choice of defining
UMLive to be formula (4.4) with Procs equal to {0,1} and v equal to (z, pc).
This implies that both processes keep taking steps forever, executing their
critical sections infinitely often, which makes it seem like a good choice.
Actually, that makes it a bad choice.
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Algorithm UM is unacceptable because formula UMSafe, which de-
scribes the pseudocode, permits deadlock. If both processes execute state-
ment wait before either executes w2, the algorithm reaches the deadlocked
state in which neither await statement is enabled. Conjoining UMLive to
UMSafe produces a formula asserting that such a deadlocked state cannot
occur. It ensures the liveness property we want, that processes keep execut-
ing their critical sections. However, it does this not by requiring only that
processes keep taking steps, but also by preventing them from taking some
steps—namely, ones that produce a deadlocked state. A fairness property
shouldn’t do that.

Before going further, let’s see why UMSafe A UMLive doesn’t allow such
a deadlocked state to be reached. The reason is that the formula satisfies
this invariant:

(4.7) =(pc(0) = pe(1) = w2)

This is an invariant of UMSafe A UMLive because it is true initially and
it can be made false only by a step in which a process p executes its wait
statement in a state s with pc(p — 1) = w2; and we now show that such a
step cannot occur.

It’s an invariant of UMSafe, and hence of UMSafe A UMLive, that
pc(p) = wait implies z(p) = FALSE. Hence, pc(p—1) = w2 and z(p) = FALSE
in state s, which implies [E{ PNexzt(1 — p)), is true. Therefore, UMLive im-
plies that & PNezt(1 — p)), must be true at state s of the behavior. This
implies that the process p step can’t occur, because it would lead to dead-
lock which would make such a ( PNext(1 — p)), step impossible. Therefore,
no step of the program can make (4.7) false. Since it is true in an initial
state, (4.7) is an invariant of UMSafe A UMLive.

Thus, UMLive should not be the fairness property for algorithm UM,
because it disallows a program step allowed by UMSafe. Before determining
what the fairness property should be, let’s characterize exactly what’s wrong
with property UMLive.

4.2.2.2 Machine Closure

The general principle illustrated by program UM is that fairness for a pro-
gram should require only that something eventually happens, so it should
rule out only infinite behaviors in which that thing never happens. It should
not rule out finite behaviors.

A liveness property by itself does not rule out any finite behaviors. A
liveness property L by definition allows any finite behavior to be completed
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to a behavior that satisfies L. Property UMLive is a liveness property, so the
finite behavior in which the program reaches a deadlocked state can be com-
pleted to a behavior satisfying UMLive. For example, we can concatenate
to that finite behavior a complete behavior satisfying UMSafe A UM Live.
(There are many behaviors of UMSafe that don’t deadlock.) Since that con-
catenation contains infinitely many steps of each process, it satisfies UM Live.
However, it doesn’t satisfy UMSafe because the step between the last state
of the deadlocked finite behavior (which is a deadlocked state) and the first
state of a complete behavior does not satisfy the program’s next-state action.
It is impossible to complete that deadlocked behavior to a behavior satis-
fying both UMLive and UMSafe because the next-state action of UMSafe
does not allow any non-stuttering step from a deadlocked state.

For a liveness property L to be a fairness property for UMSafe, it should
not just require that any finite behavior can be completed to a behavior
satisfying L; it should require that any finite behavior that satisfies UMSafe
can be completed to a behavior that satisfies UMSafe A L.

In general, a pair (S, L), where S is a safety property and L a liveness
property, is defined to be machine closed iff every behavior satisfying S can
be completed to a behavior satisfying S A L. We require that a fairness
property for a program having the safety property S be a liveness property
L such that (S, L) is machine closed. The following theorem, proved in the
Appendix, provides a nice mathematical characterization of machine closure.

Theorem 4.4 If S is a safety property and L a liveness property, then
(S, L) is machine closed iff EC(SAL) = S.

4.2.3 Weak Fairness

Let’s now see how to describe fairness with a machine-closed liveness prop-
erty. Using the requirement

(4.8) [E{PNezt(p))y ~ (PNext(p)),

worked fine for program Increment. It failed for program UM . The reason it
worked for program Increment is that when PNext(p) is enabled, it remains
enabled until a PNext(p) step occurs. In program UM, process p can reach
a state in which pe(p) equals w2 and PNezt(p) is enabled, but process 1 —p
can then take a step that disables action PNezt(p).

To obtain a machine-closed condition, we have to weaken (4.8) so it rules
out fewer behaviors. The obvious way to do that is by requiring a PNezt(p)
step to occur not if PNext(p) just becomes enabled, but only if it remains
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enabled until a PNext(p) step occurs. Let F'U G be the temporal formula
asserting that F' is true until G is true. (We'll discuss later exactly what U
means.) As our choice of fairness property, we will replace property (4.8)
by:

(4.9) (IE(PNest(p)}, U (PNext(p))y) ~ (PNext(p)),
However, rather surprisingly, (4.9) is equivalent to:
(4.10) OE(PNext(p))y, ~ (PNext(p))s

To prove this, we first have to examine the definition of /. When we say
that F is true until P is true, we usually mean that P is eventually true
and FE is true until P becomes true. But if £ U P implies that OP is true,
then (4.9) would be trivially true and thus useless, since it would assert that
(PNext(p)), conjoined with some other condition leads to ( PNext(p)),. So
we have to interpret ¥ U P to mean that either P is eventually true and F
is true until it is, or P is not eventually true and F is true forever. Thus,
whatever the precise meaning of U is, we have:

(4.11) = (BUP) = (OPAEU P)V (~OP ADE)

The equivalence of (4.9) and (4.10) follows from this RTLA theorem, which
is proved in the Appendix.

Theorem 4.5 (4.11) implies = ((E U P) ~ P) = (OFE ~ P) for any
formulas F and P.

A liveness property commonly assumed of multiprocess algorithms, called
weak fairness, is that (4.10) is true for every process p. We generalize this
concept to define weak fairness of an arbitrary action A to be the formula
WF,(A) defined by:

(4.12) WF,(A) 2 OE(A), ~ (A),
Another form of fairness called strong fairness that is sometimes assumed
is discussed later. We will see how weak and strong fairness are used to
write machine-closed descriptions of abstract programs. A special case
of the general result is that if S is the formula Init A O[Next], and Next
equals 3p € Procs : PNext(p), then (S,Vp € Procs: WF,(PNext(p)) is ma-
chine closed. But before we get to all that, let’s examine weak fairness.
The first thing we observe is that for a multiprocess program described
with pseudocode, weak fairness of a process’s next-state action is equiva-
lent to the conjunction of weak fairness of all the actions described by the
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process’s statements. That is, if PNext(p) equals 37 € I: A;(p) for a set
I, action A;(p) describes the statement with label 7, and v is the tuple of
program variables, then:

(4.13) = WF,(PNext(p)) = Viel : WF,(4;(p))

This is because ( PNext(p)), is enabled iff (A, (p))v is enabled, in which
case pc(p) can be changed only by an (A,.p)(p))v step. Thus, in any state
of a behavior with pc(p) = 4, the formula [E(PNext(p)), = C({PNext(p)),
is equivalent to [E(A;(p)), = O(A4i(p))y. A rigorous justification of (4.13)
is that it is a special case of Theorem 4.7 in Section 4.2.7 below.

The following tautology is useful for deducing properties from weak fair-
ness assumptions:

(4.14) = WF,(4) = (OOE(A), = O0(A),)

It makes weak fairness look stronger than the definition because OO(A),
is a stronger property than ©(A),. Here’s an informal proof of (4.14).
The definition of WF,(A) implies the right-hand side of the equivalence be-
cause CO[E(A), implies that eventually (A), is always enabled, whereupon
WF,(A) keeps forever implying that an (A), step occurs, so there must be
infinitely many (A), steps, making OC(A), true. The opposite implica-
tion is true because O[E(A), implies CO[E(A),, so the right-hand side of
the equivalence implies that OO(A), is true and hence O(A), is true. A
rigorous proof of (4.14) is by the following RTLA* reasoning, substituting
[E(A), for F and (A), for G:

OF ~ G = O(0F = ©G) by definition of ~»
= O(-0F V<OG6) by propositional logic
= O(C-FVOQG) by -OF = O=F (3.25)
= OOC(-FVG) by (3.23)

= OO-FVvOOG by (3.27)
= -00—-F = 0OG by propositional logic
OOF = 006G ~OO—F = O=O-F = O0-—F by (3.25)

The following tautology is useful for proving a weak-fairness formula, be-
cause it has an additional hypothesis in the implication:

(4.15) =WF,(A) = (QOE(A), AO[-4], ~ (A),)

“With these definitions of F' and G, the formula OC(—~F V G) is not a TLA formula.



CHAPTER 4. SAFETY, LIVENESS, AND FAIRNESS 127

It is proved by expanding the definition of ~» and applying the proposi-
tional logic tautology = (F = G) = (F A—G = G) and the TLA tautol-
ogy = -<C(A), = O[-A],. Using (4.15) to prove WF,(A) is essentially a
proof by contradiction.

Proving these kinds of temporal logic tautologies is a good exercise.
However, there are temporal logic theorem provers that can do it for you.

4.2.4 Temporal Logic Reasoning

Thus far, the only properties we’ve verified that programs satisfy have been
invariance properties. Proving invariance requires no temporal logic rea-
soning. To prove = Init A O[Next], = OInv we prove the LA formulas
= Init = Inv and = Inv A [Next|, = Inv’ and then apply a single temporal
logic proof rule.

Nontrivial temporal logic reasoning is required for proving that programs
satisfy liveness properties. We often prove liveness properties of the form
P ~s @). This property asserts that something is true at all “times” in a
behavior—namely, whenever P is true, () is eventually true. The description
Init A O[Next], of a program cannot be used directly to prove P ~ @
because it asserts only that something is true initially. For that reason, the
first thing we do when proving P ~» @ is to prove that some formula Inv is
an invariant of the program, so the program implies OInv A O[Nezt],. We
then use OInv A O[Next|, to prove P~ Q.

A formula F that asserts something is true at all times is called a O
formula. The formula OInv A O[Next|, is a O formula because it’s equiv-
alent to the RTLA formula O(Inv A [Next|,). Because of the tautology
= O0F =0F, we can define F' to be a O formula iff it’s equivalent to
OF. By (3.17), the conjunction of O formulas is a O formula. In general,
(3.18) implies Vi € S: F'; is a O formula if each F; is a O formula.

In a proof, we almost always want every temporal logic formula asserted
by a statement to be a O formula. A theorem with statement F' asserts
= F. The proof rule (3.16) tells us that = F' implies = OF. This means
that whenever we prove F', we have proved OF. However, that does not
mean that when we have proved a step in a proof that asserts F', we have
proved OF. When we prove a step

427 G~ H

we have not proved = G ~» H. We have proved = Asp = (G ~ H), where
Asp is the conjunction of all the assumptions in effect at statement 4.2.7. By
the proof rule (3.21), = Asp = (G ~ H) implies |= OAsp = O(G ~ H).
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If Asp is a O formula, so it’s equivalent to OAsp, then proving 4.2.7 proves
= Asp = O(G ~ H). Therefore proving 4.2.7 is equivalent to proving

42.7. O(G ~ H)

if Asp is a O formula. Since the conjunction of O formulas is a O formula,
Asp is a O formula if all the assumptions in effect at statement 4.2.7 are O
formulas.

We assure that every statement that asserts a temporal formula F' asserts
OF by making every temporal formula in an ASSUME clause be a O formula.
Any temporal formula F' asserted by a statement can then be considered to
assert OF. The following are O formulas for all temporal formulas F' and
G, state expressions v, and actions A: OOCF (obviously), COF by (3.29),
F ~» G by definition of ~», and WF,(A) by the definition (4.12) of WF.

4.2.5 Reasoning With Weak Fairness

We now see how to show that an abstract program with weak fairness con-
ditions satisfies a liveness property. We will do this with a modification
of algorithm UM called the One-Bit algorithm that is an acceptable mu-
tual exclusion algorithm. But first, we examine what liveness condition the
algorithm should satisfy.

4.2.5.1 Liveness for Mutual Exclusion

The liveness condition Dijkstra required of the mutual exclusion algorithm
outlined in Figure 4.1 was that if some process is at statement wait, then
eventually some process enters its critical section—expressed by:

(4.16) (Ip € Procs : pe(p) = wait) ~ (Ip € Procs : pc(p) = cs)

This condition is usually called deadlock freedom. That’s a misuse of the
term, because deadlock freedom is actually the safety property asserting that
the program never reaches a deadlocked state—one in which no process
can take a step. Property (4.16) also rules out what is called livelock, in
which no process enters its critical section although some processes keep
executing statements in their waiting sections. However, when discussing
mutual exclusion, we will use deadlock freedom to mean property (4.16).
This condition allows one or more processes to be starved—that is, to remain
forever in their waiting section—while other processes enter and leave the
critical section.



CHAPTER 4. SAFETY, LIVENESS, AND FAIRNESS 129

variables z = (p € {0,1} — FALSE) ;
process p € {0,1}

variables pc = ncs ;

while TRUE do

ncs: skip ;

wait: x[p] : = TRUE ;

w2: if p =0 then await —z[1]

else if z[0] then w3: z[1] : = FALSE ;
w4: await - z[0] ;
goto wait
end if
end if ;
cs:  skip ;
exit: x[p] : = FALSE
end while

end process

Figure 4.3: Algorithm OB.

Dijkstra also required that processes be allowed to remain forever in
their noncritical sections. Just because a process might send output to the
printer, we don’t want to insist that it does. This requirement rules out
simple algorithms in which processes take turns entering the critical section.
A process that does not want to enter its critical section cannot be required
to do anything to allow other processes to enter their critical sections.

4.2.5.2 The One-Bit Algorithm

The basic idea of the One-Bit algorithm is to modify algorithm UM to pre-
vent deadlock by having process 1 wait when both processes are concurrently
trying to enter the critical section. This is done by modifying process 1 so
that if it sees that z[0] equals TRUE in statement w2, then it sets z[1] to
FALSE and waits until z[0] equals FALSE (so process 0 has exited its crit-
ical section) before going back to statement wait and trying again. The
pseudocode for the algorithm, which we call OB is in Figure 4.3.°
Algorithm OB satisfies mutual exclusion because processes use the same
protocol to enter the critical section as algorithm UM: Each process p sets
z[p] to TRUE and can then enter the critical section only if z[1 — p] equals

5 Algorithm OB is the two-process case of an N-process algorithm that was discovered
independently by James E. Burns and me in the 1970s, but not published until later [7, 29].
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FALSE. In fact, it has the same inductive invariant (4.6) as UM except that
the type invariant TypeOK must be modified because pc(1) can now also
equal w3 or w4. For algorithm OB, we define:®

(4.17) TypeOK = Az € ({0,1} — {TRUE, FALSE})
A pe € ({0,1} — {ncs, wait, w2, w3, w4, cs, exit})
A pc(0) ¢ {w3, wd}

We define Inv to equal (4.6), with TypeOK defined by (4.17).
Let OBSafe, the safety property of OB described by the pseudocode, be
the formula Init A O[Next],, where v equals (z, pc) and

Next = 3p e {0,1} : PNext(p)

The fairness condition we want OB to satisfy is weak fairness of each pro-
cess’s next-state action except when the process is in its noncritical section.
A process p remaining forever in its noncritical section is represented in our
abstract program by no PNext(p) step occurring when pc(p) equals ncs.
The fairness condition we assume of program OB is therefore:

OBFuir = Yp e {0,1} : WF,((pc(p) # nes) A PNext(p))

The formula OBSafe A OBFair, which we call OB, satisfies the liveness
property that if process 0 is in its waiting section, then it will eventually
enter its critical section. That is, OB implies:

(4.18) (pc(0) € {wait, w2}) ~ (pc(0) = cs)

This implies deadlock freedom, because if process 0 stops entering and leav-
ing its critical section, then it eventually stays forever in its noncritical
section. If process 1 is then in its waiting section, it will read z[0] equal to
FALSE and enter its critical section.

4.2.5.3 Proving Liveness

We will now see how to reason more rigorously about liveness. Even if
you never write rigorous correctness proofs, learning how to reason about
liveness will help you better understand liveness properties.

There are two kinds of liveness properties that we prove: that a program
implies leads-to properties such as (4.16), and that a program implies the

SFor any infix predicate symbol like = or €, putting a slash through the symbol negates
it, so e ¢ S means —(e € S).
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OInv A O[Next], A OBFair

pc(0) € {wait, w2} — 1 5 pc(0) = w2 —3, pc(0) = ¢s
T —5
pc(0) = wait

Figure 4.4: Leads-to lattice for the proof of (4.18).

fairness properties of a more abstract program. Here we consider leads-to
properties. Proving fairness properties is discussed in Section 5.4.

The proof of a leads-to formula is usually decomposed into proving sim-
pler leads-to formulas. Figure 4.4 shows how we decompose the proof of
formula (4.18) using what we call a leads-to lattice.

First, let’s pretend that the box and the formula labeling it aren’t there.
We then have just a directed graph whose nodes are formulas. A formula F
and its outgoing edges represent the assertion that F' leads to the disjunction
of the formulas those edges point to. Thus, the two edges numbered 1 assert
the formula:

(pc(0) € {wait,w2}) ~ ((pc(0) = wait) V (pc(0) = w2))

By the meaning of leads to, the property asserted by each formula F' in the
graph means that if the program is ever in a state for which F' is true, then
it will eventually be in a state satisfying a formula pointed to by one of the
outgoing edges from F. The graph has a single sink node (one having no
outgoing edge). Every path in the graph, if continued far enough, leads to
the sink node. By transitivity of the ~» relation, this means that if all the
properties asserted by the diagram are true of a behavior, then the behavior
satisfies the property F' ~ H, where H is the sink-node formula and F
is any formula in the lattice. In particular, the properties asserted by the
diagram imply formula (4.18). By (3.31), that every formula in the graph
leads to the sink-node formula means that the disjunction of all the formulas
in the graph leads to the sink-node formula.

Now to explain the box. Let A equal OInv A O[Next], A OBFair, the
formula that labels the box. Formula A is implicitly conjoined to each of the
formulas in the graph. It is a O formula, since the conjunction of O formulas
is a O formula, and OBFuair is the conjunction of WF formulas, which are
O formulas.

Since A is conjoined to every formula in it, the leads-to lattice makes
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assertions of the form
ANG ~ (ANHy)V...V(ANHj)

Since A equals OA, and once OA is true it is true forever, this formula is
equivalent to AAN G ~ H; V...V H;. (This follows from (3.32c).and
propositional logic.)

If H is the unique sink node of the lattice, then proving the assertions
made by the lattice proves = A A G ~ H for every node G of the lat-
tice. Since A equals OA, it’s easy to see that a behavior that satisfies
AN G ~ H must satisfy A = (G ~ H), so proving = AN G ~ H
proves = A = (G ~ H). All this is true only because the formula A is a
O formula. In general, we label a box in a leads-to lattice only with a O
formula.

Remember what the proof lattice of Figure 4.4 is for. We want to prove
that OB implies (4.18). By proving the assertions made by the proof lattice,
we show that the formula A labeling the box implies (4.18). By definition of
OB and because OB implies OInv, formula A is implied by OB. Therefore,
by proving the leads-to properties asserted by the proof lattice, we prove that
OB implies (4.18). Note how we had to use the O formula OInv A O[Next],
instead of OBSafe, which is true only initially.

To complete the proof that OB implies (4.18), we now prove the leads-
to properties asserted by Figure 4.4. The leads-to property asserted by the
edges numbered 1 is:

A A (pe(0) € {wait,w2}) ~ ((pc(0) = wait) V (pc(0) = w2))

It is trivially true, since pc(0) € {wait, w2} implies that pc(0) equals wait
or w2, and O(F = G) implies F ~ G.

The formula A A (pe(0) = wait) ~ (pe(0) = w2) asserted by edge num-
ber 2 is true because A implies OInv A O[Next], and the weak fairness
assumption of process 0, which imply (pc(0) = wait) ~ (pc(0) = w2).

The formula

(4.19) A A (pc(0) = w2) ~ (pc(0) = es)

asserted by edge number 3 is the interesting one. Its proof is decomposed
with the proof lattice of Figure 4.5.

The property asserted by the edges numbered 1 in this leads-to lattice has
the form AAF ~ (GV(F AO-QG)). This formula is a tautology. Intuitively,
it’s true because if F' is true now, then either G is true eventually or F' is
true now and =G is true from now on. It’s proved by:
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OInv A O[Next], A OBFair

O((pe(0) = w2) A2(0) 3

| 3
pc(1) € {es, exit, nes}
p

O(pe(1l) = nes) c(l) € {waii, w2, w3, wi}
6
5 O(pe(1) = w4)

7
D—\Ji(l)
8¢ *_J
pc(0) = c¢s

Figure 4.5: Leads-to lattice for the proof of (4.19).

ANF = F A (OGV O-G) G VvV O-G equals TRUE
= OG V (F AN O-G) by propositional logic
= OG V O(F A O-G) by (3.23)
= O(G V (F ANDO-G)) by (3.23)
(

which shows = (AAF = O(GV (F AO-G)), from which we can deduce
EAAF~ (GV(FAO=G)) by (3.20) and the definition of ~».

The leads-to formula asserted by edge 2 is an implication. It’s true be-
cause OInv AO[Next], implies that, if pc(0) = w2 and O(pc(0) # cs) are ever
true, then pc(0) = w2 must remain true forever, which by OInv implies z(0)
must equal TRUE forever. It is proved by proving that (pc(0) = w2) A z(0)
is an invariant of an abstract program. The initial predicate of this program
is Inv A (pc(0) = w2). Its next-state relation is:

Next2 = Inv A Next A (pe(0) # cs)

The formula O[Next2], is implied by OInv and O[Next], and the conjunct
O(pc(0) # cs) of the formula at the tail of the edge 2 arrow. (Note that the
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prime in this formula is valid because pc(0) # c¢s always true implies that
it’s always true in the next state.) We are using an invariance property of
one program to prove a liveness property of another program. This would
seem strange if we were thinking in terms of code. But we're thinking
mathematically, and a mathematical proof contains lots of formulas. It’s
not surprising if one of those formulas looks like the formula that describes
a program.

The edges numbered 3 enter a box whose label is the same formula from
which those edges come. In general, an edge can enter a box with a label
OF if it comes from a formula that implies OF. This is because a box
labeled OF is equivalent to conjoining OF to all the formulas in the box,
and OF ~ (G1 V...V G,) implies OF ~ ((OF A G1) V...V (OF A G)).
An arrow can always leave a box, since removing the formula it points to
from the box just weakens that formula.

Proofs of the assertions represented by the rest of the lattice’s edges are
sketched below.

edges 3 The formula represented by these edges is true because the dis-
junction of the formulas they point to asserts that pc(1) is in the set
{nes, wait, w2, w3, w4, cs, exit}, which is implied by Olnv.

edges 4 If pc(1) equals cs or exit, then OInv A O[Next], and the fairness
condition for process 1 imply that it will eventually be at ncs. Either
pc(1l) equals ncs forever or eventually it will not equal nes. In the
latter case, O[Next], implies that the step that makes pc(1) = nes
false must make pc(1) = wait true.

edge 5 This is an implication since OInv implies that if process 1 is forever
at ncs, then z(1) is forever false.

edge 6 If process 1 is at wait, w2, or w3, then its weak fairness condition
implies it is eventually at w4. When process 1 is at w4, formulas
O[Nezt], and Oz(0) (from the label of the inner box) imply that it
must remain forever at w4.

edge 7 This is an implication, because Inv and pc(1) = w4 imply —z(1).

edge 8 O-z(1), O(pc(0) = w2) (implied by the inner box’s label), and
OBFuair imply that a process 0 step that makes pc(0) equal to ¢s must
eventually occur. (Equivalently, these three formulas are contradic-
tory, so they imply FALSE which implies anything.)
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The proof sketches of the properties asserted by edges 4 and edge 6 skim
over more details than the proofs of the other the properties asserted by the
lattice. A more detailed proof would be described by a lattice in which each
of the formulas pointed to by the edges numbered 3 were split into multiple
formulas—for example, the formula pc(1) € {cs, exit,ncs} would be split
into the formulas pc(1) = ¢s, pc(1) = exit, and pc(l) = nes. A good check
of your understanding is to draw the more detailed lattice and write proof
sketches for its new edges.

4.2.6 Strong Fairness
4.2.6.1 Starvation Free Mutual Exclusion

Mutual exclusion was not motivated by sharing a printer. It’s needed when
multiple processes perform operations on the same data. As we saw from
the Increment example of Section 3.3, even sharing a simple counter without
synchronization can result in increment operations being lost. An easy way
to synchronize data sharing is to put every operation to the shared data in
a critical section.

The One-Bit Algorithm OB implements mutual exclusion with processes
that communicate using only simple reads and writes of shared variables.
Synchronizing processes in this way is inefficient. Dijkstra proposed the
communication mechanism called a binary semaphore or lock. A lock is a
variable that can have two values, traditionally taken to be 0 and 1. Let’s
call that variable sem. Initially sem equals 1. A process can execute two
atomic operations, P(sem) and V(sem), to the lock. These operations can
be described in pseudocode as:

P(sem) V(sem)
await sem = 1; sem =1
sem =10

Locks were originally implemented with operating system calls. Modern
multiprocessor computers provide machine instructions to implement them.
Using a lock, mutual exclusion for any set Procs of processes can be imple-
mented with the trivial algorithm LM of Figure 4.6.

Let PNext(p) now be the next-state action of process p of program LM.
With weak fairness of (pc(p) # nes) A PNext(p) for each process p as its
fairness property, algorithm LM satisfies the deadlock freedom condition
(4.16). However, deadlock freedom allows individual processes to be starved,
remaining forever in the waiting section.
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variables sem =1 ;
process p € Procs
while TRUE do
ncs: skip ;
wait: P(sem) ;
cs:  skip ;
exit: V(sem)
end while
end process

Figure 4.6: Program LM : mutual exclusion with a semaphore.

Let Wait(p), Cs(p), and Ezit(p) be the actions described by the state-
ments in process p with the corresponding labels wait, cs, and exit. Weak
fairness of (pc(p) # nes) A PNext(p) is equivalent to the conjunction of weak
fairness of the actions Wait(p), Cs(p), and Exit(p). Program LM allows
starvation of individual processes because weak fairness of the actions of
each process ensures that if multiple processes are waiting to execute that
action, then some process will execute it. But if processes continually reach
the wait statement, some individual processes p may never get to execute
Wait(p).

It’s reasonable to require the stronger condition of starvation freedom,
which asserts that no process starves. This is the property

(4.20) Vp € Procs : (pc(p) = wait) ~ (pe(p) = cs)

which asserts that any process reaching wait must eventually enter its critical
section. For LM to satisfy this property, it needs a stronger fairness property
than weak fairness of the Wait(p) actions.

4.2.6.2 The Definition of Strong Fairness

By the usual meaning of fair, the fairest lock would be one in which processes
execute their Wait(p) actions in the order in which they set pc(p) to wait.
Some implementations of locks ensure this property. However, we don’t
consider it to be a fairness property because it produces a description of
program LM that is not machine closed. It rules out finite behaviors in which
processes execute their Wait(p) actions in the wrong order—executions in
which a process p reaches the wait statement after process ¢, but p enters
the critical section before ¢ does. Machine closure means that the liveness
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condition does not forbid any finite behaviors allowed by the program’s
safety property described by the pseudocode.

There is a standard way to strengthen weak fairness that produces ma-
chine closed program descriptions. Weak fairness of an action A asserts
that if ever A is always enabled, then an A action must eventually occur.
To strengthen this condition, we replace the requirement that A be always
enabled by the weaker requirement that it be infinitely often enabled. We
therefore define strong fairness of A by:

(4.21) SF,(A) 2 OCE(A),~ (A),

Analogous to formulas (4.14) and (4.15) for weak fairness are:
(4.22) | SF,(A) = (OCE(A), = OC(A),)

(4.23) ESFy(4) = (BCE(A)y AD[RA]y ~ (A)y)

The informal justification and the proof of (4.22) are similar to the ones for
(4.14). The proof of (4.23) is essentially the same as that of (4.15).

4.2.6.3 Using a Strongly Fair Semaphore

To make program LM starvation free, meaning that it satisfies (4.20), we
conjoin to the safety property LMSafe defined by the pseudocode the fairness
property LMFair equal to Vp € Procs : LMPFair(p), where LMPFair(p) is
the fairness requirement for process p. If we let LMPFuair(p) be the conjunc-
tion of strong fairness of Wait(p) and weak fairness of Cs(p) and Ewit(p),
then the following argument shows LMSafe A LMFair implies starvation free-
dom. Starvation means that a process p waits forever with pc(p) = wait.
That is possible only if other processes keep entering and leaving their crit-
ical sections. But whenever a process executes the Ezit action, it sets sem
to 1, which makes [E( Wait(p)), true. Thus [E{ Wait(p)), must be true in-
finitely often, which by strong fairness of Wait(p) implies that Wait(p) is
eventually executed, so p must enter its critical section.

There are several ways of writing formula LMPFair(p). First, we ob-
serve that weak and strong fairness are equivalent for the actions Cs(p) and
Ezit(p). This is because the action is enabled iff pc(p) has the appropriate
value, so it remains enabled until a step of that action occurs to change
pc(p). Thus, when the action is enabled, it is continuously enabled until it
is executed. We can therefore write LMFuair as the conjunction of strong
fairness of the three actions Wait(p), Cs(p), and Ezit(p).
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The same sort of reasoning that led to (4.13) of Section 4.2.3, as well as
Theorem 4.7 of Section 4.2.7, imply that the conjunction of strong fairness
of these three actions is equivalent to strong fairness of their disjunction.
Therefore, we can write LM Fuair as strong fairness of their disjunction, which
equals (pe(p) # nes) A PNext(p).

While SF, ((pe(p) # nes) A PNext(p)) is compact, I prefer not to define
LMPFuair(p) this way because it suggests to a reader of the formula that
strong fairness of Cs(p) and Exit(p) is required, although only weak fairness
is. Usually, the process’s next-state action will be the disjunction of many
actions, and strong fairness is required of only a few of them. I would define
LMFuair to equal

WF,((pc(p) # ncs) A PNext(p)) A SF,(Wait(p))

This is redundant because the first conjunct implies weak fairness of Wait(p)
and the second conjunct asserts strong fairness of it. But a little redundancy
doesn’t hurt, and its redundancy should be obvious because strong fairness
implies weak fairness.

4.2.7 Properties of WF and SF

Several assertions were made above about weak and strong fairness. We now
assert the general theorems from which those assertions follow. The first is
that taking weak and strong fairness conditions as the liveness property
produces a machine-closed description of a program. This is true if we take
not just a single weak or strong fairness property or the conjunction of a
finite number of them. It is true for a conjunction of a countable set of weak
and/or strong fairness conditions, if each of those conditions asserts fairness
of a subaction of the program’s next-state action.

An action A is defined to be a subaction of an action Next iff = A = Next
is true. The subactions of the next-state action Nezt for which fairness is as-
serted are usually disjuncts in the definition of Nezt—for example, Wait(p)
is a subaction of the next-state action Next of algorithm OB. Often, we as-
sert fairness of an action P A A where A is a disjunct in the definition of Next
and P is a state predicate—for example, the action (pc(p) # nes) APNext(p)
of OB."

We now state the theorem asserting that the conjunction of fairness prop-
erties produces a machine-closed specification. Its proof is in the Appendix.

TAll the results that will be stated are satisfied if we allow a subaction A to be one
satisfying = Inv A A = Next, where Inv is an invariant of the program. However, this
generalization does not seem to be needed in practice.
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Theorem 4.6 Let Init be a state predicate, Next an action, and v a tuple
of all variables occurring in Init and Next. If A; is a subaction of Next for
all 7 in a countable set I, then the pair

( Init A O[Next],, Yi € I : XFL(4;))
is machine closed, where each XFf] may be either WF, or SF,,.

Writing an infinite conjunction of fairness properties may not seem to be
something we would do in practice. However, the next-state action of an
abstract program sometimes does contain an infinite disjunction—that is,
existential quantification over an infinite set of subactions—and we might
want a fairness condition for each of those subactions. For example, a pro-
gram that dynamically creates processes may be described as having an
infinite number of processes, only a finite number of which have their next-
state action enabled at any time. We might want a fairness condition for
each of those processes.

It was stated above that, for program LM, weak or strong fairness of
(pc(p) # mes) A PNext(p) is equivalent to weak or strong fairness of its
three subactions Wait(p), Cs(p), and Ezit(p). That’s true because when
any one of these subactions is enabled, a step of neither of the other two
subactions can occur until a step of that subaction occurs. Let @ equal
(pc(p) # nces) A PNext(p) and let’s call its three subactions A, Ag, and As.
This condition can then be asserted as:

(4.24) Viel..3: B(A;)y, = (E(Q)y = E(A;) U (A4;),

where U is the until operator with which we first defined weak fairness
of PNezt(p) as (4.8). Similarly to what we did for weak fairness, we can
remove the U by observing that F' U/ G implies that if G is never true,
then F' must remain true forever. That (A;), is never true is asserted by
—O( Ay )y, which is equivalent to O[—A4;],. Therefore (4.24) implies

(4.25) Viel..3 : B(A;)y AO[-4], = O(E(Q), = E(4;))

While (4.24) implies (4.25), the formulas are not equivalent. Formula (4.25)
is strictly weaker than (4.24). However, it’s strong enough to imply that
strong or weak fairness of all the A; is equivalent to strong or weak fairness
of ()—assuming that () is the disjunction of the A;. Here is the precise
theorem; its proof is in the Appendix.

newpage to
make link to
theorem work
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Theorem 4.7 Let A; be an action for each i € I, let Q = JieI:4;,
and let XF be either WF or SF. Then

E (Viel : O(E(4;), A D[ﬁA]v
O[=Ql, A O(
= (XFu(Q) = Viel:XFy(

=
[E(
A;)

It is perhaps interesting, but of no practical significance, that the theorem
is valid even if the set of actions A; is uncountably infinite.

Q)o = [E{4;)y))
)

The completeness result for safety properties in Theorem 4.1 can be
extended as follows to arbitrary properties. A proof is sketched in the Ap-
pendix.

Theorem 4.8 Let x be the list z1, ..., z, of variables and let F' be a
property such that F'(o) depends only on the values of the variables x in o,
for any behavior o. There exists a formula S equal to Init A O[Next]x 4y A
WF () (Next), where Init and Next are defined in terms of F, y is a variable
not among the variables x, and the variables of § are x and ¥, such that
EF= G iff =[S]= G, for any property G. If F is a safety property,
then the conjunct WF . ,y(Next) is not needed.

Like Theorem 4.1, this result is of theoretical interest only.

4.2.8 What is Fairness?

Before TLA, concurrent abstract programs were generally written in some-
thing like a coding language. Fairness meant that each process had to exe-
cute its next atomic statement when it could. Viewed in terms of TLA, each
atomic statement was described by an action, and fairness meant fairness
of those actions. Usually that meant weak fairness of the action, but when
the statement was a synchronization primitive, it sometimes meant strong
fairness. For rigorous reasoning, those fairness requirements were expressed
as requirements on when control in the process had to move from one control
point to another [44].

With TLA, fairness was generalized to weak and strong fairness of arbi-
trary actions. We have considered a fairness property for a safety property
S to be a formula L that is the conjunction of weak and strong fairness con-
ditions on actions such that (S, L) is machine closed. However, weak and
strong fairness of an action are defined in terms of how the action is written,
not in terms of its semantics. While we have given semantic definitions of
safety, liveness, and machine closure; we have not done it for fairness.
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I only recently learned that a semantic definition of fairness was pub-
lished in 2012 by Volzer and Varacca [48]. Their definition of what it means
for a property L to be a fairness property for a safety property S can be
stated in terms of the following infinite two-player game. Starting with seq
equal to the empty sequence, the two players forever alternately take steps
that append a finite number of states to seq. The only requirement on the
steps is that after each one, seq must satisfy S. The second player wins
the game if she makes seq an infinite sequence that satisfies L. (Since S
is a safety property, seq must satisfy S.) They defined L to be a fairness
property for S iff the second player can always win, regardless of what the
first player does (as long as he follows the rules).

It is mathematically meaningless to say that a definition is correct. How-
ever, this seems to be the only reasonable definition that includes weak and
strong fairness such that fairness implies machine closure and the conjunc-
tion of countably many fairness properties is a fairness property. This defi-
nition also encompasses other fairness properties that have been proposed,
including one called hyperfairness [33].

I believe that weak and strong fairness of actions are the only fairness
properties that are relevant to abstract programs. However, this general
definition is interesting because it provides another way to think about fair-
ness. More importantly, it’s interesting because concepts we are led to by
mathematics often turn out to be useful.

4.3 Possibility and Accuracy

4.3.1 Possibility Conditions

Informally, a safety property states what an abstract program is allowed to
do and a liveness property states what it must do. If a behavior violates a
safety property, then it does so at a particular step in the behavior. There-
fore, we can also view a safety property as stating what a program must not
do—that is, it must not take a step that violates the property. So, liveness
says what must happen and safety says what must not happen. That a
program eventually sets z to 0 is a liveness property, that it never sets z to
0 is a safety property.

Possibility says what might happen. That a program might set z to 0 is
a possibility condition. It is not a property, because it is not a predicate on
behaviors. It is satisfied by an abstract program iff there is some behavior
of the program in which z is set to 0. We can tell that the program satisfies
it if we see such a behavior. But seeing one behavior that doesn’t satisfy it
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doesn’t tell us whether or not some other behavior might satisfy it. However,
we will see that possibility conditions can be expressed as properties that
explicitly mention the program’s actions.

Knowing that something might be true of a system, but knowing noth-
ing about the probability of its being true, is of almost® no practical use.
The only way I know of calculating such probabilities is to view the abstract
program as a state-transition system, attach probabilities to the various
transitions, and mathematically analyze that system—for example, using
Markov analysis. Usually, the state-transition system would be a more ab-
stract program implemented by the program of interest.

While possibility conditions of systems are of little interest, we don’t
reason about systems; we reason about abstract programs that describe sys-
tems. Verifying that a program satisfies a possibility condition can be a way
of checking what we will call here the accuracy of an abstract program—that
it accurately describes the system it is supposed to describe. For example,
if the system doesn’t control when users send it input, a program that ac-
curately describes the system and its users should satisfy the condition that
it’s always possible for users to enter input.

4.3.2 Expressing Possibility in TLA

There exist logics for expressing possibility properties and tools for checking
them. Such tools could be built to check those properties for abstract TLA
programs, and it might be worthwhile to do so. But we will see how that
can be avoided.

Even though a possibility condition is not a property, that an abstract
program satisfies a possibility condition can be expressed by a TLA formula
that depends on the program and the possibility condition. For example,
suppose S is a TLA description of an abstract program and the action Input
is a subaction of its next-state action that describes users entering input.
That it is always possible for users to enter input could be considered to mean
that the Input action is enabled in every reachable state of the program,
which is asserted by

E S = OIE(Input)

However, “always possible” might instead mean that from any reachable
state, there is a sequence of possible steps that reach a state with [E(Input)
true—a condition we will call “always eventually possible”. To express this

8Section 7.1 explains one way in which a possibility condition can be used to verify a
property of a system and could therefore be of practical use.
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and other possibility conditions in TLA, we can use the action composition
operator defined in Section 3.4.1.4. Recall that for any action A, the action
AT is true of a step s — t iff ¢ is reachable from s by a sequence of one or
more A steps.

Now consider an abstract program Init A O[Next], where Init is a state
predicate, Next is an action, and v is the tuple of all variables that appear
in Init or Next. Let’s abbreviate ([Next],)" as [Next]l. If s is a reachable
state of the program, then s — t is a [Next]; step iff it is possible for an
execution of the program to go from state s to state ¢. (Since [Next], allows
stuttering steps, ¢ can equal s. In fact, [Next]! is equivalent to [Next™],.)
A state t is a reachable state of the program iff there is a state s satisfying
Init such that s — t is a [Next]} step. In other words, ¢ is a reachable state
of the program iff there is a state s such that s — ¢ is an Init A [Next]]
step.

We can now express the condition that it is always eventually possible for
the user to enter input, meaning that from any reachable state, it is possible
to reach a state in which [E(Input) is true. We generalize this condition by
replacing [E(Input) with an arbitrary state predicate P. For the abstract
program Init A O[Next|,, that P is always eventually possible is expressed
as:

(4.26) = Init A O[Neat], = OIE([Next][ A P’)

This example indicates that it should be possible to express possibility
conditions in TLA using Nexzt™ and the [E operator. However, like (4.26),
the resulting TLA formulas are quite different from the ones that arise in
checking that an abstract program satisfies a property. Different tools would
be needed to verify that a program satisfies a possibility condition expressed
in this way. It would be nice to be able to verify possibility conditions by
verifying the same kind of properties that arise in verifying that an abstract
program satisfies a liveness property. Here is how it can be done for the
condition that it is always possible to reach a state satisfying P.

This condition obviously holds if the program satisfies the property that
in any reachable state, a state satisfying P must eventually occur—that is,
if the program satisfiers the property OCP. Let S equal Init A O[Next],.
The safety property S will not imply the liveness property OO P unless P
is true in all reachable states of F—that is, unless S implies OP. However,
if F'is a fairness property for S, so (S, F') is machine closed, then S A F
has the same set of reachable states as S. So, any state satisfying P can
be reached from a reachable state of S iff it can be reached from a state
satisfying S A F. Therefore, it suffices to verify that a state satisfying P
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can be reached from every reachable state of S A F', which is true if S A F
implies OO P. Therefore, we can verify that P is always eventually possible
by verifying

= Init A O[Next], N F = OOP

for a fairness property F of Init A O[Next],. By Theorem 4.6, we can ensure
that F' is a fairness property for S by writing it as the conjunction of strong
fairness properties. (Since strong fairness implies weak fairness, there is no
need to use weak fairness properties.) There is a completeness result that
essentially says that such a fairness property always exists for any state
predicate P if S has the standard form Init A O[Next], [32].

I suspect that TLA can in a similar way express possibility for a more
general class of possibility conditions than the two possible interpretations
of “always possible”. However, the only other possibility condition I have
found to be useful for checking the accuracy of an abstract program is a
very simple one, discussed in the following section.

4.3.3 Checking Accuracy

Using TLA to check that a state predicate P is always eventually possible
may not be easy, since it requires finding a fairness condition that implies P
is true infinitely often. There’s a simpler condition that is easier to check:
it’s possible for P to be true (at least once). It would be more useful to
check the stronger condition of always eventually possible. However, I have
found that most people, including me, don’t spend enough time checking
the accuracy of their abstract programs. The weaker check is likely to be
more helpful in practice because it’s more likely to be done than one that
requires more effort.

It’s possible for P to be true means that it is true in some reachable
state. This is equivalent to the assertion that =P is not true in all reachable
states—in other words, that =P is not an invariant of the program. We
can check this by asking a tool for checking invariance to check if =P is
an invariant. If the tool reports that it isn’t, then it’s possible for P to be
true. For example, if a model checker reports that your mutual exclusion
algorithm satisfies mutual exclusion, you should check that it’s possible for a
process to enter its critical section. This is especially true if you did not have
to make many corrections to reach that point. Remember that a program
that takes no non-stuttering steps satisfies most safety properties.

Tools can provide other ways of checking the accuracy of a program. For
example, if Input is a subaction of the program’s next-state action, a TLA™
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model checker called TLC reports how many different steps satisfying Input
occur in behaviors of the program. If it finds no such steps, then it is not
always possible for an Input step to occur with either definition of “always
possible”. Finding too few such steps can also be an indication that the
program is not accurate.

Accuracy of an abstract program cannot be formally defined. It means
that a program really is correct if it implements the abstract program. In
other words, an abstract program is accurate iff it means what we want it
to mean, and our desires can’t be formally defined. That accuracy can’t
be formally defined does not mean it’s unimportant. There are quite a few
important aspects of programs that lie outside the scope of our science of
correctness.

4.4 Real-Time Programs

Real-time abstract programs are ones in which timing constraints ensure
that safety properties hold. Real time is most often used in concrete pro-
grams to ensure not safety but liveness. It appears in timeouts that guaran-
tee something eventually happens. For example, to guarantee that a message
is eventually delivered despite possible message loss, a timeout occurs if an
acknowledgement of the message is not received soon enough after it is sent,
and the message is then resent. A program that uses timeouts only in this
way is not a real-time program. The actual time at which a timeout occurs
affects only performance, not correctness. Therefore, timeout can be mod-
eled in an abstract program as an event that must eventually occur but can
occur at any time. The program can use liveness to abstract away time.
We need to write a real-time abstract program only if timing constraints are
used to ensure safety properties.

Scientists have been dealing mathematically with real-time systems for
centuries by simply representing time as the value of a variable. It has
been known for decades that this works for real-time programs too [6]. I
will illustrate how it is done with a mutual exclusion algorithm of Michael
Fischer.”

I believe that most work on the correctness of real-time programs has
considered only safety properties. Instead of requiring that something even-
tually happens, it requires the stronger property that it happens within
some fixed amount of time, which is a safety property. Fischer’s Algorithm

Fischer sent this algorithm in an email to me [12]. I believe Martin Abadi and I were
the first to describe it in print [1].
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is more general because in addition to using real-time to ensure mutual ex-
clusion, a safety property, it uses fairness to ensure deadlock freedom, a
liveness property.

In the past 40 years, I have had essentially no contact with engineers who
build real-time systems. I know of only one case in which TLA was used
to check that a commercial system satisfied a real-time property [5]. From
the point of view of our science, there is nothing special about real-time
programs. However, how well tools work can depend on the application
domain. The TLAT tools were not developed with real-time programs in
mind, and it’s unclear how useful they are in that domain.

4.4.1 Fischer’s Algorithm

The algorithm without its timing constraints is described by the pseudocode
in Figure 4.7. The constant Procs is the set of processes, and none is some
constant that is not in Procs. The global variable z is read and written by
all the processes and, as usual, the value of pc(p) is the label of the next
statement to be executed by process p. As explained in Section 4.2.2.1, the
statement await P is a synchronization primitive that allows the program to
continue only when the state predicate P is true. Thus, the wait statement
of process p is described by the action:

A pe(p) = wait

N\ T = none

A pc’ = (pc EXCEPT p — wl)
Az =z

With no time constraints, mutual exclusion is easily violated. Two processes
can execute the wait statement when z equals none, then statements wl and
w2 can both be executed by the first process and then by the second one,
putting both processes in the critical section. Mutual exclusion is ensured
by timing constraints.

We assume that each step is executed instantaneously at a certain time,
and that each process executes wl at most § seconds after it executes wait
and executes w2 at least € seconds after it executes wl, for constants § and
e with 0 < e. (The algorithm doesn’t specify what the time units are; we
will call them seconds for convenience.) It’s a nice exercise to show that this
ensures mutual exclusion by assuming that two processes are in their critical
sections and showing that the necessary reads and writes of z that allowed
them both to enter the critical section must have occurred in an order that
violates the timing constraints if § < e. While it may be good enough for
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variables x = none ;

process p € Procs
variables pc = ncs ;
while TRUE do

ncs: skip ;  noncritical section

wait: await © = none ;

wl: = :=p;

w2: if x # p then goto wait end if ;
cs:  skip ; critical section

exit: T 1= mone

end while
end process

Figure 4.7: Fischer’s Algorithm.

such a simple algorithm, this kind of behavioral reasoning is unreliable for
more complicated programs.

To verify mutual exclusion more rigorously, we describe Fischer’s Al-
gorithm with its timing constraints as an abstract program. This requires
adding a variable whose value represents the current time. Scientists usu-
ally call that variable ¢, but I like to call it now. We also add a variable rt,
where the value of rt(p) records the time at which certain actions of process
p were executed. The program also contains an additional process called
Time that advances time.

The algorithm is written in pseudocode in Figure 4.8. The initial value
of now can be any number in the set IR of real numbers, and the initial value
of rt can be any function from the set of processes to IR. Let’s now examine
the code of process p. Two assignments to 7t(p) have been added. Each
sets rt(p) to the time at which the action in which it appears is executed,
the actions being the ones performed when the program is at control points
wait and wl. Also added is an await statement at w2 that allows the
action to be performed only when now — rt(p) > e. This await enforces
the requirement that the w2 action must not be executed until at least €
seconds after execution of the w1l action.

Let’s now examine the Time process. It repeatedly performs a single
atomic action, so it has just one control point that needs no label. That
action increases the value of now. The :€ operation is like the assignment
operation := except with = replaced by €. That is, a step of the Time
process’s action assigns to now an arbitrary element of the set on the right-
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variables z = none, now € IR, rt € (Procs - R) ;
process p € Procs

variables pc = ncs ;

while TRUE do

ncs: skip ;  noncritical section
wait: await r = none ;

rt(p) 1= now ;
wl: x :=p;

rt(p) 1= now ;

w2: await now — 1t(p) > € ;
if z # p then goto wait end if ;

cs:  skip ; critical section
erit: T := none
end while

end process

process Time
while TRUE do
now :€ {t eR :
At > now
AYp € Procs : (pc(p) = wl) = (¢t < rt(p)+9)}
end while
end process

Figure 4.8: Fischer’s Algorithm with explicit time.

hand side of the :€. The action can assign to now any value ¢ greater than
its current value subject to the condition that ¢ < rt(p)+¢ for every process
p at control point wl. It is this condition that enforces the requirement that
a process must execute statement wl within § seconds of when it executes
the wait statement.

Fischer’s Algorithm illustrates the basic method of representing real-
time constraints in an abstract program. Lower bounds on how long it
must take to do something are described by enabling conditions on the
algorithm’s actions. Upper bounds are described by enabling conditions on
the action that advances time. There are a number of ways of enforcing these
bounds. The use of the variable rt in Fischer’s algorithm shows one way.
Another is to use variables whose values are the number of seconds remaining
before an action must be executed (lower bounds) or can be executed (upper
bounds)—variables whose values are decremented by the time-advancing
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action.

The idea of an abstract program constraining the advance of time is
mind-boggling to most people, since they view a program as a set of in-
structions. They see it as the program stopping time. You should by now
realize that an abstract program is a description, not a set of instructions.
It describes a universe in which the algorithm is behaving correctly. That
description may constrain the algorithm’s environment, which is the part
of the universe that the algorithm doesn’t control—for example, its users.
Time is an important part of that environment if the amount of time it takes
to perform the algorithm’s actions is relevant to its correctness.

4.4.2 Correctness of Fischer’s Algorithm

Having written Fischer’s algorithm as an abstract program, we know how
to verify its correctness. Mutual exclusion is an invariance property, and
to understand why the algorithm satisfies it we need to find the inductive
invariant that explains why the algorithm satisfies that property. As usual,
the inductive invariant asserts type-correctness of all the variables. The
interesting part of the invariant makes the following assertions about each
process p:

e If control is at wl, then the current time is at most § seconds after
the time at which p just executed the wait statement.

e If control is at cs or exit, then z = p and in no process is control at
wl. (This condition implies mutual exclusion.)

o If pis at w2 and = = p, then any process with control at w1l must
execute statement w1l before p can execute statement w2.

These assertions about every process p are expressed mathematically as:

Vp € Procs :
A (pe(p) = wl) = (rt(p) < now < (rt(p) +9))
A (pc(p) € {cs,exit}) = (x=p) A (V¢ € Procs : pe(q) # wl)
A (pe(p) = w2) A (z=p) =
Vj € Procs : (pc(q) = wl) = ((rt(q) +9) < (rt(p) +¢€))

You should understand why the three conjuncts in this formula are the three
assertions expressed informally above. Adding the type-correctness part and
proving that it is an inductive invariant is a good exercise if you want to
learn how to write proofs.
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Under suitable fairness assumptions, Fischer’s Algorithm is deadlock
free. Recall that deadlock freedom for a mutual exclusion algorithm means
it’s always true that if some process is trying to enter the critical section,
then some process (not necessarily the same process) will eventually do so.
Deadlock freedom of Fischer’s Algorithm follows from the algorithm having
this additional invariant:

(4.27) (z # none) = (pc(z) € {w2, cs, exit})

Here’s a sketch of a proof by contradiction that the algorithm is deadlock
free. Suppose some process is at wait and no process is ever in its critical
section. Eventually, some set of processes will be forever in their noncritical
sections, and one or more processes will forever have control at wait, wl,
or w2. Eventually the latter processes will all wind up waiting at the wait
statement with « # none. But that contradicts the invariant (4.27), which
implies that process x cannot be at wait.

4.4.3 Fairness and Zeno Behaviors

What fairness requirements of the abstract program of Figure 4.8 are as-
sumed in the informal argument that the program is deadlock free? If
procStep(p) is the next-state action of a process p in Procs, then we nat-
urally assume weak fairness of the action procStep(p) A (pc # ncs). What
about fairness of the Time process? Let’s call that process’s action timeStep.
The obvious choice is to let it be strong fairness of timeStep. However, that
allows the following behavior: While all other processes in Procs remain in
their noncritical sections, a process p executes the wait statement and then,
at time ¢, executes statement w1l that sets rt(p) to ¢t. Repeated executions
of action timeStep then set now to ¢t +¢€/2, then t +2x%¢€/3, then ¢t 4+ 3x¢€/4,
and so on. Process p must wait forever at w2 because now is always less
than ¢ + ¢ and the w2 action is enabled only when now > t 4+ €. Such a
behavior, in which time remains bounded, is called a Zeno behavior.

The most natural way to avoid the problem of Zeno behaviors is to
make the abstract program describing Fischer’s Algorithm disallow them.
The obvious way to do that is to conjoin this liveness property:

(4.28) YVt eR : O(now > t)

which asserts that the value of time is unbounded. However, this isn’t neces-
sarily a fairness property. It’s easy to write an abstract program that allows
only Zeno behaviors, so conjoining the liveness property (4.28) produces a
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program that allows no behaviors. For example, we can add timing con-
straints to the program of Figure 4.7 that require a process both to execute
statement w1l within ¢ seconds after executing statement wait and to wait
at least € seconds after executing wait before executing wl, with § <e. If a
process executes wait at time ¢, then now < ¢+ § must remain true forever.
If we added fairness properties that required processes eventually to reach
the wait statement and execute it if it’s enabled, then the program would
allow only Zeno behaviors.

We can ensure that Fischer’s Algorithm satisfies (4.28) by having it re-
quire an appropriate fairness condition on the advancing of time. The condi-
tion we need is strong fairness of the action timeStep A (now’ = exp), where
exp is the largest value of now’ permitted by the values of rt(p) for processes
p with control at w1, or now + 1 if there is no such process. More precisely:

A

etp = LET T = {rt(p)+0 : pe{qe Procs : pc(q) = wl}}
IN IF T ={} THEN now +1 ELSE Min(T)

where Min(T') is the minimum of the nonempty set T of real numbers. With
this fairness condition on advancing time and the conjunction of the fairness
conditions for the processes in Proc, Fischer’s Algorithm satisfies (4.28) and
the proof sketch that the algorithm is deadlock free can be made rigorous.

If we are interested only in safety properties, there is no need for an
abstract program to rule out Zeno behaviors. A program satisfies a safety
property iff all finite behaviors allowed by the program satisfy it, and a Zeno
behavior is an infinite behavior. In many real-time programs, liveness prop-
erties are of no interest. Correctness means not that something eventually
happens but that it happens within a certain length of time, which is a
safety property. Zeno behaviors then make no difference, and there is no
reason to disallow them.

Even if Zeno behaviors don’t matter, the absence of non-Zeno behaviors
can be a problem. Since real time really does increase without a bound,
an abstract program in which it is not always possible for time to become
arbitrarily large is unlikely to be accurate. Therefore, we almost always
want to ensure that a real-time program satisfies the condition that for any
t € IR, it is always possible for now > t to be true. This is true iff, for
any t € IR, from any reachable state of the program it is always possible
for now > t to be true. This is the kind of possibility condition considered
in Section 4.3. We saw there that if the program Safe is a safety property
that satisfies this condition, then we can verify that it does so by finding a
conjunction F' of fairness properties for Safe and verifying:

(4.29) E Safe A F = OO(now > t)
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for all ¢ € IR. (Since a real-time program never allows now to decrease, it
suffices to verify that Safe A F' implies (4.28).)

4.4.4 Discrete Time

Verifying properties of real-time programs is easier if we assume time is dis-
crete and now always equals a multiple of some time unit. It may seem
obvious that, since concrete programs run on real computers reading the
current time from a clock that advances in discrete steps, we can always
assume discrete time. However, different processes can be executed on dif-
ferent computers whose clocks can run at slightly different rates. Still, it
seems likely that an abstract program will be sufficiently accurate if it as-
sumes time changes only in one yoctosecond (10724 second) increments. So,
in practice we should be able to assume that the values of now and any time
constants are integers, leaving unspecified how long one time unit is.

When writing proofs, there doesn’t seem to be much reason to use dis-
crete time. The main advantage of discrete time is that tools for automat-
ically verifying properties of ordinary abstract programs can, in principle,
handle discrete real-time programs. For example, I didn’t prove that what I
claimed in Section 4.4.2 to be an inductive invariant of Fischer’s Algorithm
actually is one. Instead, I used a model checker to check that it is, which
gave me enough confidence to make the claim.

Many model checkers are based on enumerating reachable states, usually
on a small instance of the program—for example, with a small number of
processes. This is impossible with continuous time, in which a single state
can have possible next states with uncountably many values of now. There
are still infinitely many reachable states with discrete time because the values
of now are unbounded, but counterexamples to incorrect safety properties
and to (4.28) for a particular time ¢ can be found by examining all reachable
states with now less than some value.

The number of reachable states that must be examined can be reduced
for real-time programs that satisfy a condition called symmetry under time
translation. This condition asserts that for every d € R there is a time-
translation mapping T ; from states to states such that: For every state s,
the value of now in state T 4(s) equals d plus its value in s, and any step
s — t satisfies the program’s next-state action iff 7';(s) — T 4(t) does. For
example, Fischer’s Algorithm is symmetric under the time translations T4
defined by letting the values of now and rt(p) in T4(s) equal d plus their
values in s, and letting the values of z and pc be the same in s and T 4(s).

Suppose S is a program symmetric under the time-translation functions
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T4, and for simplicity assume that the program’s initial predicate asserts
now = 0. Let’s call states s and ¢ translation equivalent iff t = T 4(s) for
some d. If P is a safety property containing only variables whose values
are left unchanged by the functions 7'y, then to verify that P is satisfied by
S we can verify that it is satisfied by the program S obtained from § by
considering two translation equivalent states to be the same state. Often,
there will be some time X such that every reachable state of S is translation
equivalent to a state in which now < A, in which case now < A in every
state of S. This implies we can verify that S satisfies (4.28) by checking
that it satisfies G(now > A + 1), which requires examining only reachable
states with now < A + 1. The details can be found elsewhere [35].

Being able to reduce verification of a discrete-time program to examining
reachable states with now less than some value would still leave an enormous
number of states to consider if now advanced in yoctosecond steps. Hen-
zinger, Manna, and Pnueli [17] proved that for a class of programs called
timed transition systems, certain properties can be verified with discrete
time in which now advances only in reasonably sized steps. Timed tran-
sition systems are essentially programs in which, like Fischer’s Algorithm,
time is used only to require minimum and maximum delays between when
a program action becomes enabled and when it either must be executed
(maximum delay) or may be executed (minimum delay). If those delays are
constants that are all multiples of some time unit A, then a certain class of
properties can be verified by letting time always be a multiple of A. That
class of properties are ones in which replacing each state in a behavior by
time-translating it by d with —A < d < 0 does not change whether the
behavior satisfies the property. It includes properties that depend only on
variables whose values are unchanged by time translation. It also includes
the property (4.28).

One reason that has been given for preferring continuous time is that
it is necessary for composing programs. It would be difficult to compose a
program in which a clock tick represents a nanosecond with one in which a
clock tick represents a millisecond. However, we can easily describe a pro-
gram in terms of a clock that ticks at an unspecified rate and an unspecified
constant that equals the number of clock ticks in a second.

Program composition is discussed in Section 7.2, where it is shown how
the composition of two abstract programs can be represented as the con-
junction of the TLA formulas that describe them. Moreover, a real-time
abstract program can be written as the conjunction of two formulas, one
describing an ordinary, untimed program, the other specifying the required
timing constraints [1]. However, this kind of abstract program composition
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is not yet usable in practice.

4.4.5 Hybrid Systems

A hybrid computer system is one that controls physical processes—for exam-
ple, one that flies an airplane or runs a chemical plant. An abstract program
that describes such a system is a real-time program that describes not only
the passage of time but also other physical quantities like altitude or pres-
sure. There is no fundamental difference between programs that describe
hybrid systems and other real-time programs. The current altitude or pres-
sure is represented by a variable like any other variable. Abstract programs
describing hybrid systems differ from other real-time abstract programs only
in the math used to describe them. If the variable prs describes the current
pressure, then the time-advancing subaction of the next-state action might
contain a subformula like:

now’

(4.30) prs’ =oprs —|—/ exp dt

now
for some expression erp containing the bound variable ¢ and other vari-
ables [30].

It may seem that a representation of the behavior of a continuous process
by a sequence of discrete states would not be sufficiently accurate. For
example, if it is required that the pressure not be too high, violation of that
requirement would not be found if it occurred during the time between two
successive states of the behavior. This is not a problem because correctness
means that a property is true of all possible behaviors, and the possibility of
the pressure being too high at some time is revealed by a behavior containing
a state in which now equals that time.

Other than the differences implied by the use of continuous math, such
as the calculus in (4.30), rather than discrete math, proving properties of
hybrid programs is the same as proving properties of other real-time ab-
stract programs. Automatic tools like model checkers for ordinary abstract
programs seem to be unsuitable for checking abstract programs in which
variables represent continuously varying quantities. Methods have been de-
veloped for checking such programs [11].



Chapter 5

Refinement

We have discussed one abstract program implementing another. We now
consider more carefully what that means. We write abstract programs with
TLA formulas, and it is rather weird to talk about one formula implementing
another. Computer scientists who view programs mathematically generally
use the term refinement rather than implementation. Henceforth, we will
use the two terms interchangeably. There are two aspects to refinement:

Step Refinement The refining program has a finer grain of atomicity.
This means that a non-stuttering step of the high-level program can
correspond to multiple steps of the refining program, all but one of
them implementing stuttering steps of the high-level program. In the
example of Section 3.5.1, the hour-minute-second clock HMS' refines
the hour-minute clock HM. Every non-stuttering step of HM, which
advances the minute, corresponds to 60 steps of HMS, each changing
the second and one of them changing the minute.

Data Refinement A program refining another program can also refine the
representation of data used by the higher-level program. This will be
illustrated by refining a higher-level program that uses numbers with
a program that implements a number by a sequence of digits.

Refinement usually involves both step and data refinement, with step re-
finement manifest as operations on the lower-level data requiring more non-
stuttering steps than the corresponding operations on the higher-level pro-
gram’s data.

155



CHAPTER 5. REFINEMENT 156

5.1 A Sequential Algorithm

In step refinement, the additional steps taken by the lower-level program
correspond to stuttering steps in the higher-level one. We consider an ex-
treme example of this: a program that terminates after taking a single
non-stuttering step that is refined by a traditional sequential program that
computes a value and stops.

This example is used because it’s simple and nicely illustrates data re-
finement. Its use does not imply that this way of looking at refinement is
the best one to use for traditional programs. There are other methods for
reasoning about refinement of traditional programs that are probably better
than our science of more general programs [20]. We consider only safety in
this example; liveness is straightforward.

The high-level abstract program Add begins with variables z and y equal
to arbitrary natural numbers, sets the variable z to their sum, and termi-
nates. Termination is indicated by changing the value of a Boolean-valued
variable end to TRUE. Here is the definition:

InitA = (end = FALSE) A (z € IN) A (y € IN)
NextA = —end A (2/ =z +y) A (end’ = TRUE)
vA = (x,y,z,end)

Add = InitA A O[NextA],4

Note that Init does not specify the value of z. Its initial value doesn’t matter.
Note also that action NextA does not specify the values of 2’ or 3. You
should realize by now that this doesn’t mean those values are unchanged; it
means that their new values are unspecified. We are assuming that the final
values of z and y don’t matter; we care only about the final value of z.

5.1.1 A One-Step Program

We refine Add by a program AddS in which a natural number is represented
by a finite ordinal sequence of decimal digits—that is, by an element of the
set Seq(0..9). For convenience, we number the digits from right to left, so
the sequence (1,2,3) represents the number 321. Thus a sequence seq of
digits represents the number Val(seq) defined as follows, where the empty
sequence is defined to represent 0.

Val(seq) = 1F seq = () THEN 0
ELSE seq(1) + 10 % Val(Tail(seq))
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Let @ represent addition of numbers represented in this way as sequences
of digits. In other words, @ satisfies

Val(s & t) = Val(s) + Val(t)

for all sequences s and t of digits. We would expect Add to be refined by
the program AddS obtained by replacing + by @ and IN by Seg(0..9) in
the definition of Add. To avoid confusing the variables of the two programs,
we’ll also replace z, y, z, and end by u, v, w, and fin, so AddS is defined
by:

InitS = (fin = FALSE) A (u € Seq(0..9)) A (v € Seq(0..9))
NextS = —fin A (w' = u®v) A (fin' = TRUE)

vS 2 (u, v, w, fin)

AddS = InitS A O[NextS],s

Exactly what does it mean for AddS to refine Add? 1 believe the natural
definition is: If we look at any behavior of AddS and interpret the numbers
represented by the sequences u, v, and w of digits to be the values of x,
y, and z and we interpret the value of fin to be the value of end, then we
get a behavior of Add. More precisely, let “<=” mean “is represented by”.
That AddS refines Add means that a behavior satisfying AddS represents a
behavior satisfying Add with this representation of the variables of Add in
terms of the variables of AddS"

(5.1) x « Val(u) y < Val(v) 2z + Val(w) end « fin

Here’s an example to illustrate this, where the first two-state sequence is
a finite behavior satisfying AddS and the second two-state sequence is the
finite behavior it represents. Remember that AddS leaves unspecified the
value of w in an initial state and the values of v and v in a halting state.
A “?” in the second behavior means the value is unspecified because, as
explained in Section 2.2.7, Val(seq) is a meaningless expression if seq isn’t
a sequence of numbers.

u = (1,2,3) u = (5)
v o (3,2) v o =27
w o V2 — w o (4,4,3)
fin : FALSE | fin: TRUE |
xz = 321 )
y o 23 y o7
z w7 — z 344
end :: FALSE end :: TRUE

0 1
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As you can see, the second finite behavior satisfies Add, since 321423 equals
344 and end has the values the abstract program Add says it should.

Let’s look closely at this example. What it shows is that when we per-
form the substitutions (5.1) for the variables of Add in a behavior satisfying
formula AddS, we get a behavior that satisfies formula Add. In other words,
in any behavior: if the behavior satisfies AddS, then it satisfies the formula
Add when we perform the substitutions (5.1). This means that the following
formula is true:

(5.2) = AddS =
(Add wiTH z < Val(u), y < Val(v), z < Val(w), end < fin)

This is what it means for AddS to refine Add under the representation de-
fined by (5.1). That representation is called a refinement mapping. Formula
(5.2) asserts that AddS implements Add under this refinement mapping.

I find (5.2) beautiful. We've already seen that, viewed in terms of
TLA, step refinement is implication. Now we see that data refinement is
substitution—the ordinary mathematical operation of substituting expres-
sions for variables in a formula. How beautifully simple! In science, beauty
is not an end in itself. It’s a sign that we’re doing something right.

5.1.2 Two Views of Refinement Mappings

There are two ways to view the refinement mapping (5.1) that appears
in (5.2). To understand them, let’s simplify things by ignoring irrelevant
variables and letting state mean program state—an assignment of values
to the program’s variables. Let an S-state be a state of AddS, which is
an assignment of values to the variables u, v, w and end of AddS; and let
an A-state be an assignment of values to the variables z, y, z, and end of
Add. Let an S-behavior or A-behavior be a sequence of S-states or A-states,
respectively.

The first way to view the refinement mapping is as a mapping f that
maps S-states to A-states. We can define the mappingf from S-behaviors to
A-behaviors in terms of f by f(o)(i) 2 f(o(i)) for any S-behavior o. That
AddS implements Add under the refinement mapping f means [AddS](c) =
[Add](f (o)) for every S-behavior o.

The second way to view refinement is expressed in (5.2), which states that
AddS implements Add under the refinement mapping means [AddS] (o) =
[Add wiTH ...](0o) for every S-behavior o.

In the first view, the refinement mapping maps low-level behaviors to
high-level behaviors—that is, behaviors of AddS to behaviors of Add. In
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the second view, it maps the high-level formula Add to the low-level formula
(Add wiTH ...). It may not be obvious, but these two views are equivalent.
They’re equivalent because

(5.3) [Add witn ...](0) = [Add](f(o))

is true for every S-behavior . To understand why (5.3) is true, remember
that the meaning [F] of a formula F is defined in terms of the meanings of
its subformulas. Consider the subformula 2’ = z + y of Add, which appears
in its next-state action NextA. You should understand why (5.3) is true if
you understand why this is true:

(54) [(z'=z+4+y) witH ...](0) = [/ =z + y](f(0))
A proof of (5.4) is given in the Appendix. However, I recommend that you
try figuring out by yourself why it’s true.

The bidirectional nature of refinement mappings—from low-level be-
haviors to high-level behaviors and from high-level formulas to low-level
formulas—is an example of a general mathematical principle. To explain it,
we need the concept of function composition. For any functions ¢ and h,
their composition ¢ e h is defined to be the function whose domain is the
domain of h such that g e h(d) £ g(h(d)) for any value d in the domain of
h.! (For any d in the domain of h, the expression g ® h(d) is meaningful
only if A(d) is in the domain of g.)

Let’s suppose that the collections of S-behaviors and A-behaviors are
sets. For example, we can let them be behaviors that satisfy suitable type
invariants. Formula (5.3) can then be written:

(5.5) [Add witH ...] = [Add]ef

In general, suppose L and H are sets and ¢ € (L — H), so the function
1 maps elements of L to elements of H. For any set V, the function
determines a function @ in (H—=>V) = (L= V), so ¥ maps functions
from H to V to functions from L to V. The function <1Z is defined by

—

v(g) 2 g ® . Pictorially, we have:

. Y g

+«—

vy & @m o
Refinement mappings are the special case in which L is the set of S-behaviors,
H is the set of A-behaviors, V is the set {TRUE, FALSE} of Booleans, and v
is f.

!Mathematicians generally use or “o” to denote function composition, but we have
defined those symbols to mean other things.

negative
vspace added
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5.1.3 A Step and Data Refinement

Section 3.5.1 illustrated step refinement by showing that an hour-minute-
second clock refines an hour-minute clock. We have just illustrated data
refinement by showing that AddS implements Add under a refinement map-
ping. We now show an example that involves both step and data refinement.

The example involves an algorithm AddSeq that adds numbers the way
you probably learned to add them as a child. However, we represent those
numbers as sequences of digits in the reverse order, as they are in program
AddS, with the low-order digit being the first one in the sequence. It sets
sum equal to u @ v, where u and v are numbers represented by strings of
digits. The algorithm computes sum digit by digit, keeping it equal to the
right-most digits of the sum computed so far. Each step removes the first
(right-most) digit from « and v and appends the next (left-most) digit to
sum, setting carry equal to the value 0 or 1 “carried over” from that sum.

A pseudocode description of the algorithm is in Figure 5.1, but it uses
some notation that requires explanation. Recall that Append(seq, val) is de-
fined in Section 2.3.2 to equal seq o (wval), the sequence obtained by append-
ing the value val to the end of the sequence seq of values. The code assumes
that DigitSeq is the set Seq(1..9)\ {()} of nonempty finite sequences of the
digits 0 through 9. If u and v are of unequal length, then the number of
steps taken by the algorithm you learned in school is usually equal to or one
greater than the length of the shorter number. For simplicity, the number
of steps taken by AddSeq always equals one plus the length of the longer
number. To simplify the description of what happens when the algorithm
runs out of digits in one of the numbers, it uses the operator Fiz defined as
follows to replace the empty sequence by (0):

Fiz(seq) = 1F seq= () THEN (0) ELSE seq

The algorithm’s define statement defines digit to equal the indicated ex-
pression within that statement. The value of [n/10] is the greatest integer
less than or equal to n/10. To simplify the invariant, AddSeq specifies the
initial value of carry to equal 0 and ensures that it equals 0 at the end. Since
the low-order digit of a two-digit number n is n % 10 and its high-order digit
is [n/10], it should be clear that AddSeq describes an algorithm for adding
two decimal numbers. (If it’s not, execute it by hand on an example.)

The usual way to express correctness of a program that computes a value
sum and stops is with an invariant asserting that if the program has stopped
then sum has the correct value. We can’t do that with AddSeq because the
correct value of sum is the initial value of u & v, and those initial values
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variables u € DigitSeq, v € DigitSeq, sum = (), carry =0, pc = a ;
while a: (u# () V (v#()) V (carry #0) do
define digit = Fiz(u)(1)+ Fiz(v)(1) + carry;

sum = Append(sum, digit % 10) ;
carry := |digit / 10]
end define ;

u = Tail(Fiz(u)) ;
v := Tail(Fiz(v))
end while ;

carry : =10

Figure 5.1: Algorithm AddSeq.

have disappeared by the time the program stops. To express correctness, we
can add a constant ans that equals the initial value of u @ v. Since stopping
means pc equals done for our pseudocode, correctness means:

(5.6) = AddSeq = O((pc = done) = (ans = sum))

The key part of an inductive invariant to prove (5.6) is the assertion that
ans equals the final value of sum. A first approximation to the final value
of sum is:

sum o ((carry) & (u ® v))

We haven’t said what s @ ¢t means if s or ¢ is the empty sequence, but it’s
clear that we should define the empty sequence to represent 0. However, a
close examination of the algorithm indicates that if u and v both equal ()
and carry = 0, then this expression equals a sequence with an extra 0 at the
end. The correct assertion that is the key to the inductive invariant is

(5.7) ans =1F (uowv = {()) A (carry =0)
THEN sum ELSE sum o ({carry) ® (u @ v))

The remainder of the inductive invariant asserts type correctness and that
pc = done implies that u, v, and carry have their correct final values.
However, the point of this example is not that AddSeq implements a
particular procedure for adding sequences of digits; it’s that it refines the
abstract program Add that adds two integers in a single step. This is a
dramatic example of step refinement, in which a program that can take ar-
bitrarily many non-stuttering steps to finish refines one that always finishes
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in one non-stuttering step. And we don’t have to add the constant ans to
do it.

Under the refinement mapping, one step in an execution of AddSeq must
refine a NextA step of Add; all the other steps must refine stuttering steps
of AddSeq. The initial values of the variables x and y of Add should equal
the initial values of Val(u) and Val(v). The initial values of u and v are no
longer deducible from the state after AddSeq takes it first step. This tells us
that the NextA step of Add must be refined by the first non-stuttering step
of AddSeq.

An Add step changes the value of its variable done from FALSE to TRUE.
So, the refinement mapping must assign to done an expression whose value
is changed from FALSE to TRUE by the first non-stuttering step of AddSeq.
Since further steps of AddSeq refine stuttering steps of Add, the expression
assigned to done must remain true for the rest of the execution of Add. A
suitable expression is sum # (), so we let the refinement mapping include
done < sum # ().

In the initial state of AddSeq, the refinement mapping should assign to x
and y the values of v and v. Since Add allows = and y to have any values in
its final state, it doesn’t matter what values the refinement mapping assigns
to = and y after the first step of AddSeq. However, since later steps must
refine stuttering steps of Add, the values of £ and y must not change. Zero
seems like a nice value to let z and y equal when their value no longer
matters, so we let the refinement mapping include:

T < IF sum # () THEN 0 ELSE Val(u),
y < IF sum # () THEN 0 ELSE Val(v)

Finally, we must decide what value the refinement mapping assigns to z.
If we add to AddSeq the constant ans that always equals the result the al-
gorithm finally computes, then we can substitute Val(ans) for z. But we
don’t have to add it because the invariant (5.7) tells us what expression con-
taining only the variables of AddSeq always equals ans. We could therefore
substitute for z the expression obtained by applying Val to the right-hand
side of equation (5.7). However, there’s a simpler expression that we can
use. Convince yourself that the following substitution works:

2 < Val(sum) 4+ 105" o (carry + Val(u) + Val(v))

This completes the refinement mapping. That AddSeq implements Add
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under the refinement mapping means that this theorem is true:

= AddSeq = (Add wiTH
done < sum # () ,

(
T 4 IF sum # () THEN 0 ELSE Val(u),
y < IF sum # () THEN 0 ELSE Val(v),

2+ Val(sum) + 10Len(svm) s (carry 4+ Val(u) + Val(v)))

5.2 Invariance Under Refinement

If an abstract program T implements an abstract program S under a refine-
ment mapping, and Inv is an invariant of .S, then the refinement mapping
maps Inv to an invariant of 7. The precise statement of this is the following

“...” is any refinement mapping.

theorem, where

Theorem 5.1 =T = (S wWiTH...) and | S = Olnv imply
= T = O(Inv WITH...).

The proof is simple:

1. =S = Olnv implies = (S = OInv) WITH. ...

PROOF: Substitution in a true formula produces a true formula

2. = (S = OInv) WITH... equals | (S WITH...) = O(Inv WITH...).

PROOF: By definition of what substitution means.

3. Q.E.D.
PROOF: The theorem follows from steps 1 and 2 by propositional logic.

Recall the trick used in Section 3.2.3 to obtain an invariant of FGSqrs
from an invariant of the coarser-grained algorithm Sgqrs. We replaced the
variable y by the expression yy in the invariant of Sqgrs. That trick was
an application of the theorem, because FGSqrs implements Sqrs under the
refinement mapping x < x, y < yy.

5.3 An Example: The Paxos Algorithm

We’ve seen step and data refinement for a sequential abstract program. Con-
currency adds nothing new. Refinement works exactly the same for concur-
rent programs. This is illustrated with the Paxos consensus algorithm, an
example chosen for the following reasons:
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e It’s a distributed algorithm. Quite a few researchers used to believe
that different techniques are needed to reason about correctness of dis-
tributed programs; perhaps some still do. Paxos illustrates that there
is no mathematical difference between distributed and non-distributed
concurrent programs. In fact, Paxos is obtained as a refinement of a
non-distributed algorithm.

e It’s a widely used algorithm. If you perform any commercial transac-
tion on the Web, there is a good chance that Paxos or an algorithm
inspired by it is being executed by a program running on the computers
that perform the transaction.

e It illustrates the importance of abstraction. Thinking scientifically
means thinking abstractly. The abstract programs in this example are
more abstract than ones most computer scientists and engineers would
think of. Learning to think more abstractly is the key to building
better complex computer systems.

e The complete TLA™ specifications of the abstract programs, as well
as videos of a pair of lectures that explain them, are available on the
Web [26]. Therefore, the abstract programs are only sketched here.

The Paxos algorithm was invented (at least) twice, first by Barbara Liskov
and Brian Oki [41] and then by me.

5.3.1 The Consensus Problem

One reason for building distributed systems is fault tolerance. Systems
implemented by multiple computers are often required to operate normally
even if one or more of the computers fail. What a system should do can be
described as a single-process abstract program that executes a sequence of
commands it receives as inputs. Correct execution of the system by multiple
computers requires that all the computers agree on what that sequence of
inputs is. This is achieved by having all the computers agree on what the 7"
input is for every 4. Ensuring that all the computers agree on a single input
is called consensus. A fault-tolerant system repeatedly executes a consensus
algorithm to choose a sequence of inputs.

I was inspired to invent the Paxos algorithm because colleagues were
building a distributed fault-tolerant system. I realized that the system
had to implement consensus, so it should implement a consensus algorithm.
However, my colleagues were writing code; they didn’t have an algorithm. I
never found out how their program implemented consensus. But based on
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the state of the art of programming at the time, here is what their program
might have done.

A process called the leader, running on a single computer, receives all
input requests and decides what input should be chosen next. A new leader
will have to be selected if the initial leader fails, but we’ll worry about that
later. (Failure of a process usually means failure of the computer executing
the process.) For the system to keep running despite the failure of individual
computers, a set of processes called acceptors, each running on a different
computer, have to know what value was chosen. Moreover, only a subset of
the acceptors should have to be working (that is, not failed) for an input to
be chosen. If an input v is chosen by a leader and a set of acceptors, and
the leader and those acceptors fail, then a different leader and a different set
of acceptors must not choose an input different from v. The obvious way
to ensure that is to require a majority of the acceptors to agree upon the
input v in order for that input to be chosen. Any two majorities have at
least one acceptor in common, and that acceptor will know that it agreed
to the choice of v.

This reasoning leads to the following algorithm: The leader decides what
input v should be chosen. It sends a message to the acceptors saying that
they should agree to the choice of v. Any working acceptor that receives the
message replies to the leader with a message saying “v is OK”. When the
leader receives such an OK message from a majority of acceptors, it sends
a message to all the acceptors telling them that v has been chosen.

This algorithm works fine, and the system keeps choosing a sequence of
inputs, until the leader fails. At that point, a new leader is selected. The
new leader sends a message to all the acceptors asking them what they’ve
done. In particular, the new leader finds out from the acceptors if inputs
were chosen that it was unaware of. It also finds out if the previous leader
had begun trying to choose an input but failed before the input was chosen.
If it had, then the new leader completes the choice of that input. When the
new leader has received this information from a majority of acceptors, it
can complete any uncompleted choices of an input and begin choosing new
inputs. Let’s call this algorithm the naive consensus algorithm.

There’s one problem with the naive algorithm: How is the new leader
chosen? Choosing a single leader is just as hard as choosing a single input.
The naive consensus algorithm thus assumes the existence of a consensus
algorithm. However, because leader failures should be rare, choosing a leader
does not have to be done efficiently. So, programmers would probably have
approached the problem of choosing a leader the way they approached most
programming problems. They would have found a plausible solution and
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then debugged it. Debugging usually means thinking of all the things that
could go wrong and adding code to handle them.

Let’s pause and look at the science of consensus. Before Paxos, there
were consensus algorithms that worked no matter what a failed process
could do [45]. However, they were synchronous algorithms, meaning that
they assumed known bounds on the time required for messages sent by one
process to be received and acted upon by another process. They were not
practical for the loosely coupled computers that had become the norm by the
1980s. Although asynchronous algorithms were required, they had to solve a
simpler problem because sufficiently reliable systems could be based on the
assumption that a process failed by stopping and could not perform incorrect
actions. However, the FLP theorem, named after Michael Fischer, Nancy
Lynch, and Michael Paterson who discovered and proved it, states that no
asynchronous algorithm can implement consensus if even a single process can
fail in this benign way [13]. More precisely, any algorithm that ensures the
safety property that two processes never choose different values must allow
behaviors that violate the liveness property that requires a value eventually
to be chosen if enough processes are working and can communicate with one
another. Asynchronous algorithms that ensure liveness must allow behaviors
in which processes disagree about what input is chosen.

The leader-selection code programmers would have written therefore had
to allow either behaviors in which two processes thought they were the
leader, probably with serious consequences, or else behaviors in which no
leader is selected, causing the system to stop choosing values. With a prop-
erly designed algorithm, the probability of never choosing the leader is zero,
and a leader will be chosen fairly quickly if enough of the system is working
properly. The system my colleagues built ran for several years with about
60 single-user computers, and I don’t think their consensus code caused any
system error or noticeable stalling. There is no way to know if it had errors
that would have appeared in today’s systems with thousands of computers
and many thousands of users.

5.3.2 The Paxos Consensus Algorithm

We develop the Paxos consensus algorithm as a series of three abstract
programs: a trivial specification of the problem the algorithm solves, which
is refined by a non-distributed multiprocess algorithm, which is refined by
the Paxos algorithm. I believe that this description—in particular, its view
of Paxos as a refinement of the non-distributed algorithm—mirrors how I
actually found the algorithm.
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Only the safety properties of these abstract programs are described. In
most applications, violation of safety in a consensus algorithm can be quite
serious—for example, causing money deposited to a client’s bank account
to disappear. We will see later how the algorithm can be implemented to
almost always achieve liveness while never violating safety. As mentioned
above, the abstract programs are just sketched; complete descriptions are
available on the Web [26].

5.3.2.1 The Specification of Consensus

Instead of talking about inputs, we define consensus as choosing an element
of some set Value of values. Most correctness proofs of consensus algorithms
prove only that they satisfy the invariance property that two processes never
choose different values. A consensus algorithm must also not allow a value
to be unchosen and a different value then chosen. Proving the invariance
property is usually sufficient because it’s obvious that the algorithm doesn’t
allow a value to be unchosen. But to illustrate refinement, we write a high-
level abstract program that rules out such a possibility.

There are a number of reasonable ways to describe consensus as an ab-
stract program, and it makes little difference which one is used. Perhaps
the most obvious way is with a multiprocess abstract program in which
each process independently learns what value is chosen. The next-state ac-
tion would allow a process p that has not learned a value to learn one, with
the constraint that if any process has learned that the value v was chosen,
then p must also learn that v was chosen.

We take a different approach and let the abstract program describe only
the choosing of a value, without mentioning processes that learn the chosen
value. This abstract program has a single variable chosen that represents
the set of values that have been chosen. (In any behavior allowed by the
program, that set always has at most one value.) The initial predicate is
chosen = {}, and the next-state action is:

(chosen = {}) A (Jv € Value : chosen’ = {v})

As explained above, there is no fairness condition.

5.3.2.2 The Voting Algorithm

In the naive algorithm, leader and acceptor processes communicate by send-
ing messages. It’s natural to think about a consensus algorithm in terms of
messages being sent. However, remember that we reason about an abstract
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program in terms of its state, so we should be thinking about states, not
about sending messages. And the important part of the state is the state
of the acceptors. So, we refine the Consensus program with an abstract
program called the Voting algorithm whose state is just the state of the
acceptors. This is not just a nice way to describe the Paxos algorithm. I
believe it describes how I was actually thinking when I discovered Paxos.

In good programming, we begin by abstracting away lower-level details
and getting the high-level design right. There’s a kind of bad programming
that sounds similar: We begin writing something that handles the normal
behavior, and we then modify it to handle non-normal situations. That’s
the way the naive consensus algorithm was described, and it’s a recipe for
creating incorrect programs—both abstract and concrete ones. We should
start thinking about the general case, not the normal case.

The general state of acceptors in the naive algorithm is one that is
reached after a number of leaders have begun trying to get a value cho-
sen, and some of them may have succeeded. When a leader tries to get a
particular value chosen, we say that the leader has begun a ballot. When
an acceptor has sent an OK message for a value v in that ballot, we say
that the acceptor has voted for v in that ballot. The algorithm will assign
a unique natural number to each ballot.? The state of the Voting algorithm
records all the votes that each acceptor has cast. This is described by a
variable votes whose value is a function that assigns to each acceptor a a
set votes(a) of pairs (b, v) where b € IN and v € Value. The pair (b,v) in
votes(a) means that a has voted for v in ballot number b.

Choosing a leader is the weak point in the naive algorithm. The Voting
algorithm abstracts away the leaders. A leader serves two functions. The
first is to ensure that in any ballot, acceptors can cast votes only for the
value proposed by the leader. The Voting algorithm’s next-state action
takes care of that by not letting an acceptor cast a vote for a value v in
ballot b if a vote has already been cast in ballot b for a different value. The
second function of the leader is to learn that a value has been chosen, which
it does when it has received enough OK messages. The Voting algorithm
does away with that function by declaring that the value has been chosen
when the requisite number of OK messages have been sent—that is, when
there are enough votes cast for the value in the ballot. More precisely, we
define ChosenAt(b, v) to be true iff a majority of acceptors has voted for v in

2Don’t confuse different ballots with the different instances of the consensus algorithm
being executed. Execution of an instance of the consensus algorithm can consist of multiple
ballots.
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ballot . The Voting algorithm implements the Consensus abstract program
under the refinement mapping

(5.8) chosen <+ {v € Value : 3b € IN : Chosen(b,v)}

In addition to wotes, the algorithm has one other variable maxBal whose
value is a function that assigns to each acceptor a a number mazBal(a).
The significance of this number is that a will never in the future cast a vote
in any ballot numbered less than mazBal(a). The value of maxBal(a) is
initially 0 and is never decreased. The algorithm can increase mazBal(a) at
any time.

It may seem strange that the state does not contain any information
about what processes have failed. We are assuming that a failed process does
nothing. Since we are describing only safety, a process is never required to
do anything, so there is no need to tell it to do nothing. A failed process that
has been repaired can differ from a process that hasn’t failed because it may
have forgotten its prior state when it resumes running. A useful property
of a consensus algorithm is that, even if all processes fail, the algorithm can
resume its normal operation when enough processes are repaired. To achieve
this, we require that a process maintains its state in stable storage, so it is
restored when a failed process restarts. A process failing and restarting is
then no different from a process simply pausing.

The heart of the Voting algorithm is a state expression SafeAt(b, v) that
is true iff ChosenAt(c, w) is false and will remain false forever for any ¢ < b
and w # v. That it will remain false forever can be deduced from the current
state, because the next-state action implies both that a process a will not
cast a vote in ballot ¢ when ¢ < mazBal(a) and that mazBal(a) can never
decrease. The key invariant maintained by the algorithm is

(5.9) Va € Acceptor,b € IN,v € Value :
((b,v) € votes(a)) = SafetAt(b,v)

where Acceptor is the set of acceptors. The next-state action allows a process
a to perform either of two actions:

e Increase mazBal(a). This action is always enabled.

e Vote for a value v in a ballot numbered b. As already explained, this
action is enabled only if no process has voted for a value other than
v in ballot b and b > mazBal(a). An additional enabling condition is
required to maintain the invariance of (5.9).
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I have given you all the information you need to figure out the definition
of SafeAt(b,v) and the enabling condition on acceptors needed to maintain
the invariance of (5.9). Can you do it? Few people can. I was able to
only because I had simplified the problem to finding an abstract program
whose only processes are the acceptors and whose state consists only of the
set of votes cast and the value of mazBal. 1 had abstracted away leaders,
messages, and failures.

The Voting algorithm requires an acceptor to know the current state of
other acceptors to decide what vote it can cast. How can this lead to a
distributed consensus algorithm? I abstracted away leaders and messages; I
didn’t ignore them. I knew that an acceptor didn’t have to directly observe
the state of other acceptors to know that they hadn’t voted for some value
other than v in a ballot. The acceptor could know that because of a message
it received from a leader. I also knew that it could deduce that the other
enabling conditions were satisfied from messages it received. Abstracting
away leaders and messages enabled me to concentrate on the core problem
of achieving consensus. The solution to that problem told me what the
leaders should do and what messages needed to be sent.

5.3.2.3 The Paxos Abstract Program

The Voting algorithm told me what messages needed to be sent. But I had to
decide how to represent message passing in an abstract program. Languages
expressly designed for describing distributed algorithms usually don’t re-
quire us to make that decision because they provide built-in message-passing
primitives. However, different distributed algorithms and distributed sys-
tems have different requirements for message passing. They may or may not
tolerate lost messages; they may or may not require messages to be deliv-
ered in the order they are sent; they may or may not require that the same
message not be received twice; and so on. Our abstract programs require
that we choose how to represent message passing, but they make it easy to
represent any form of message passing we want.

I have found that most computer scientists and engineers are constrained
by thinking in terms of how messages are transmitted in actual systems.
They think of messages being sent on communication channels between pro-
cesses. Few of them would come up with the simple representation of mes-
sage passing I used in the Paxos abstract program—a representation that is
obvious if one thinks mathematically.

Paxos doesn’t require that messages be delivered in the order in which
they are sent, so there is no need for message channels. The receiver of
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a message can be inferred from the message, so we can just have a set of
messages. Paxos tolerates the same message being received multiple times
by a process, so there is no need to remove a message when it is received.
This means that if the same message is sent to multiple recipients, there
is no need for multiple copies of the message. There is also no need for a
separate action of receiving a message. An action that should be taken upon
receipt of a message simply has the existence of that message in the set of
sent messages as an enabling condition. Paxos tolerates message loss. But
since we are describing safety, there’s no difference between a lost message
and a message that is sent but never received. So, there is no need ever to
remove messages that have been sent.

We can therefore represent message passing with a variable msgs whose
value is the set of all messages that have been sent. A message is sent by
adding it to the set msgs. The presence of a message in msgs enables an
action that should be triggered by the receipt of the message. The algorithm
has a variable mazBal that implements the variable of the same name in
the Voting algorithm. It also has two other variables MazVBal and MaxVal
whose values are functions with domain the set of acceptors. They are
explained below.

The Paxos consensus algorithm can be viewed as a multiprocess algo-
rithm containing two sets of processes: the acceptors that implement the
acceptors of the Voting algorithm, and an infinite set of processes, one for
each natural number, where process number b is the leader of ballot num-
ber b. More precisely, the ballot b leader orchestrates the voting by the
acceptors in ballot b of the Voting algorithm.

The next-state action of the algorithm could be (but isn’t literally) writ-
ten in the form 3b € IN: BA(b) where BA(b) describes how ballot b is per-
formed. The ballot consists of two phases. In phase 1, the ballot b leader
sends a message to the acceptors containing only the ballot number 5. An
acceptor a ignores the message unless b > mazBal(a), in which case it sets
mazBal(a) to b and replies with a message containing a, b, MazVBal(a),
and MazBal(a). When the ballot b leader receives those messages from a
majority of the acceptors, it can pick a value v to be chosen, where v is ei-
ther a value picked by the leader of a lower-numbered ballot or an arbitrary
value. The complete algorithm describes how it picks v. Phase 2 begins
with the leader sending a message to the acceptors asking them to vote for
v in ballot b. An acceptor a ignores the message unless b > maxzBal(a), in
which case a sets mazBal(a) to b and replies with a message saying that it
has voted for v in ballot b.

The Paxos algorithm implements the Voting algorithm under a refine-
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ment mapping in which the variable votes of Voting is implemented by the
expression defined in the obvious way from the set of votes reported by
acceptors’ phase 2 messages in msgs, and in which the variable maxzBal
of Voting is implemented by the variable of the same name in the Paxos
abstract program.

The values of mazVBal and maxzVal can be described as functions of
the value of votes. For any acceptor a, the pair (mazVBal(a), mazVal(a))
equals the pair (b, v) in the set votes(a) with the largest value of b. (Ini-
tially, when votes(a) is the empty set, it equals (—1, None) for some special
value None.) Making mazVBal and mazVal variables rather than state
expressions makes it clear that they are the only information about what
messages have been sent that needs to be part of the acceptors’ states.

5.3.3 Implementing Paxos

An implementation of the Paxos consensus algorithm would add a third
phase to each ballot in which the leader sends a message announcing that a
value v had been chosen after it receives phase 2 messages telling it that a
majority of acceptors had voted for v in the ballot. With that addition, a
ballot of the Paxos algorithm looks like what the naive algorithm does when
a new leader has been selected. Phase 1 of a Paxos ballot corresponds to
the new leader finding out if it needs to complete the choosing of a value
proposed by the failed leader. Phase 2 corresponds to the leader completing
the choosing of a previously proposed value or choosing a new value.

In Paxos, a leader performs phase 1 in every instance of the consensus al-
gorithm, while in the naive algorithm it performs the corresponding actions
only once when it is selected. This makes Paxos seem much less efficient,
since leaders are infrequently replaced. However, the value to be chosen isn’t
selected until phase 2. This means that phase 1 can be executed simulta-
neously for a ballot numbered b in all instances of the consensus algorithm
the first time ballot b is executed for any instance. A single message can
serve as the leader’s phase 1 message for all instances. A single message
can also contain the phase 1 responses of a particular acceptor for all the
instances, since there is only information to be transmitted for consensus
instances that have begun but not yet chosen a value. Thus Paxos uses the
same number of messages to choose a value as the naive algorithm.

The Paxos consensus algorithm is an efficient algorithm that has been
proved to satisfy the safety requirement of consensus. We still have to see
how to get it to satisfy the liveness requirement of actually choosing a value.
To solve a problem, we need to understand it, and it’s easy to understand
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what prevents Paxos from choosing a value. An acceptor a participating in
ballot number b sets mazBal(a) to b, preventing it from responding to any
message from the leader of any ballot numbered less than b. Even in the
absence of failures or message loss, no value will ever be chosen if higher and
higher numbered ballots are begun before any ballot chooses a value.

Conversely, if ballot number b is started and no higher-numbered ballot
is begun, and if the ballot b leader and a majority of acceptors are work-
ing, then liveness assumptions that require working processes eventually to
perform enabled actions (which implicitly assume that messages sent are
eventually delivered) imply that a value is eventually chosen. This observa-
tion can be stated mathematically as a temporal logic formula and proved.
However, it is so obviously true that, to my knowledge, no one has ever
bothered doing it.

How do we assure that a ballot numbered b is started and no higher-
numbered ballots are? Paxos uses an infinite number of leader processes—
one for each ballot number. Those infinitely many processes are executed
by a finite number of computers, with each ballot number pre-assigned to
a single computer that executes the leader of the corresponding ballot. A
single computer, called the coordinator, is selected to be the only one that
executes leader processes, and it is easy to add messages that allow it to
find a ballot number higher than the values of mbal(a) for a majority of
acceptors a.

Like the naive algorithm, Paxos depends on selecting a single coordina-
tor. However, the naive algorithm can fail to maintain its safety requirement
if two different computers believe they are the coordinator. If that happens
with Paxos, safety is preserved; the algorithm just fails to make progress.
An algorithm for choosing a coordinator in Paxos needs to work only most of
the time, a much easier problem to solve. One solution uses a synchronous
algorithm that implements consensus assuming known bounds on the times
needed to transmit and process messages. That algorithm chooses the coor-
dinator assuming values for those bounds that will be satisfied most of the
time.

5.4 Proving Refinement

This section sketches how to prove that one abstract program refines an-
other. We use as an example the proof that the One-Bit mutual exclusion
algorithm OB of Section 4.2.5.2 refines program LM of Figure 4.6, assuming
a weakly fair semaphore.
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The proof uses identifiers from the definition of OB and ones from the
definition of LM. To avoid confusion, we indicate to which program an
identifier belongs with a subscript. We defined OB to equal:

Init A O[Next], N Fair
where Next = 3pe{0,1} : PNext(p)
Fair = VYpe{0,1} : WF,(PNext(p))
We now add subscripts to that definition, so OB equals:
Initop N O[Nextoplv,y N Fairop

We assume LM has the same definition, except with the subscripts LM.
We sometimes use subscripts even when they aren’t necessary—for example
writing x5 even though LM has no variable named z.

We define OBSafe and OBFuir as before, so OB equals OBSafe\NOBFuair.
We define LMSafe and LMFair similarly. As expected, safety and liveness
are proved separately. We first show that OBSafe refines LMSafe. (By
machine closure of (OBSafe, OBFair) and Theorems 4.2 and 4.4, OBFuair
isn’t needed to prove that OB refines LMSafe.) We then show that OB
implies LMFair. However, first we must define the refinement mapping
under which OB implements LM .

5.4.1 The Refinement Mapping

To define the refinement mapping, it’s helpful to think of a single behavior
in which the variables z,5 and pcop describe a behavior of program OB and
the variables sem,, and pc;,, describe the corresponding behavior of LM
that is implemented by OB under the refinement mapping. To determine
what the refinement mapping should be, for each possible step in such a
behavior that changes the values of the variables of LM, we decide how that
step should change the values of OB.

For example, if a step of the behavior describes the execution of state-
ment c¢s by a process p of LM, then it should describe the execution of ¢s by
process p of OB. Thus, when the value of pc,,(p) changes from cs to exit,
the value of pcop(p) should also change from cs to ezit. Reasoning in this
way, we see that the values of pepy(p) and peos(p) should be equal except
that when pcpy(p) equals wait, the value of pcos(p) can be wait, w2, w3,
or w4. This tells us that the refinement mapping must substitute for pc;,,
the value pcBaryp defined by:

pcBaroy = pe{0,1} = IF peop(p) € {w2, w3, w4} THEN wait
ELSE pcop(p)
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In a behavior satisfying LM, the value of sem,, can be deduced from the
value of pcpy. In particular, semy,, equals 0 iff pey,(p) equals pe or exit for
one of the processes p. From the definition of pcBaryg, this means that the
refinement mapping must substitute for sem;,, the value semBaryz defined

by:

semBaros = 1F (3p € {0,1} : peop(p) € {cs, exit}) THEN 0 ELSE 1
That OB refines LM under this refinement mapping means:
(5.10) | OB = (LM WITH pcyy < pcBarog, semyy < semBarop)

We’ll be dealing with a lot of formulas obtained from a formula Fj, by
making the substitutions defined by the refinement mapping for the variables
of LM. To keep from having lots of WITHs, we use this abbreviation, for
any formula F',,:

- A
Foy = (Fpy WITH pepy < peBareog, semyy, < semBargp)

Thus, (5.10) can be written = OB = LM. Also, pcpy equals pcBargs and
sempy equals semBarop (which explains the suffix Bar in the names pcBar
and semBar).

5.4.2 Refinement of Safety

We now sketch the proof that OBSafe refines LMSafe, which means the
proof of

(5.11) = OBSafe = LMSafe
By the definitions of these formulas, this requires proving:

(5.12) (a) | Initop = Inity

(b) = Initop A O[Nextop) = O[Nextpy]v,,,

VOB

The proof of (a) is simple. To prove (b), we use the invariant Invyp of OB,
which is defined by (4.6), where TypeOK is defined by (4.17). That is, we

assume:
(5.13) | OBSafe = Olnvyp
To prove (5.12b), it suffices to prove

(5.14) = Invog A [Nextoplvoy = [Nextimlvy,y,

VOB



CHAPTER 5. REFINEMENT 176

By definition of [...],, we can prove (5.14) by proving:

(5.15) (a) E Inves A Nextog = Nextry V (viy' = viu)

(b) = (vos" = vor) = (via’ = vrar)
Part (b) is trivial, since v, is defined in terms of the variables of vyp. For
part (a), propositional logic tells us that we prove FA (G V...V G,) = H
by proving F' A G; = H for each i. So, we decompose the proof of part (a)
by writing Nextop as the disjunction of subactions.

We use the notation introduced in Section 4.2.6 of naming the action
described by a labeled statement with the capitalized label. For example,
Csop(p) is the action described by statement cs of process p of program
OB. We decompose the proof of (5.15a) into proving:

(516) ): [TM)OB A Lbl03<p) = NextLM V (m/ - m)

for each label /bl in Figure 4.3 and p in {0, 1}.

Condition (5.16) asserts that a step of OB described by the statement
labeled [bl implements a step of LM under the refinement mapping. We
defined the refinement mapping to make that true, so we should be able
to prove this assertion. We prove it by showing that each action Lblyz(p)
implements some particular subaction of Next,,,. In particular, we prove the
following seven assertions R1-R7. Three of them assert that actions of OB
imply actions of the form (A;,),,,,. For proving that OB implies LMSafe,
we need only the weaker assertions obtained by replacing such an action by
A, ,. However, we will need the stronger assertions later for proving that
OB implies LMLive.

R1. = Invog A Nesop(p) = Nespu(p)
R2. E Invos N Waitos(p) = (on’ = Vin)
R3. }Z ITM}OB VAN W2OB(p) =
IF p =0 THEN ( Wait;,(0))y,,,
ELSE IF Zo5(0) THEN .y = vpy

ELSE  { Waityp(1)) o, ,,

R4. E Invog N W3os(p) = (vin' = vim)
R5. = Invog A Wios(p) = (viw' = Vim)
R6. = Invog A Csos(p) = (Cspu(D) )y
R7. = Invog AN Exitop(p) = (Exitin(p))v,y
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W2,5(0) = Wait,(0) =
A pcop(0) = w2 A pepu(0) = wait
A —Zop(1) A sempy = 1
A pcos’ = (pcop EXCEPT 0+ ¢s) A pepy’ = (pepy EXCEPT 0 — cs)
A Zog' = Top A semp,, =0

Invog 2 A TypeOKop
AVpe{0,1} : A (peos(p) € {w2, cs}) = zop(p)
A (pcos(p) = cs) = (pcos(l — p) # cs)

TypeOKop = A o5 € ({0,1} — {TRUE, FALSE})
A peog € ({0,1} — {nes, wait, w2, w3, w4, cs, exit})
A peop(0) ¢ {w3, wa}

pcBaros = pe {0,1} — 1F pcos(p) € {w2, w3, wd} THEN wait
ELSE pcos(p)

semBaroy = 1F 3p € {0,1} : peon(p) € {cs, exit} THEN 0 ELSE 1
pery = pcBarog sempy = semBargg

Figure 5.2: Definitions used in the proofs.

Assertion R3 is equivalent to these three assertions:

R3a. = Invog A W2,5(0) = (Wait,,(0) ),
R3b. ): In'UOB A WQOB(l) VAN IOB(O) = (m, == m)
R,?)C. ': IT?/UOB N W203(1) VAN —\JCOB(O) = < Wa’itLM(l)>vLM

All these assertions are proved by expanding the definitions of the actions
and of the refinement mapping. To see how this works, we consider R3a.
We haven’t written the definitions of the actions corresponding to the pseu-
docode statements of algorithms OB and LM. The definitions of W2,;(0)
and Wait,,,(0) as well as the other relevant definitions are in Figure 5.2.
Here is the proof of R3a.

1. SUFFICES: ASSUME: Invog A W245(0)
PrOVE: ( Wait;y(0))y,,,
ProOF: Obvious.

2. (pepu(0) = wait) A (pery’ = (pery EXCEPT 0 +— cs))
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PROOF: By the step 1 assumption and the definitions of W2,5(0) and
pceBary(0), since pepy, equals peBarog.

3. (sempy =1) A (sempy’ =0)

PROOF: W2,5(0) implies (pcop(0) = w2)A—zop(1), and Invep and —zp(1)
imply pcop(l) ¢ {cs,exit}. Hence, semBaros = 1, so semy,, = 1. The
definition of W2,5(0) and Invep (which implies pcop is a function with
domain {0, 1}) imply pcos’ (0) = cs. Hence semBaros = 0, s0 semyy,’ = 0.

4. QED.

PROOF: Steps 2 and 3 and the definition of V@tLM(O) imply Wait;,,(0).
Step 3 implies semy,; # semy, which implies v/ ,, # V., proving the goal
( Wait;y(0)),,,, introduced by step 1.

How we decomposed the proof that OBSafe refines OBLive into proving
R1-R7 was determined by the structure of Nextyp as a disjunction of seven
subactions and knowing which disjuncts of Next,,, each of those subactions
implements, which followed directly from the definition of the refinement
mapping. The decomposition of R3 into R3a—R3c followed from the struc-
ture of R3. As illustrated by the proof of R3a, the proof of each of the
resulting nine formulas is reduced to ordinary mathematical reasoning by
expanding the appropriate definitions. The only place where not under-
standing the algorithms could result in an error is in the definition of the in-
variant Invyg or of the refinement mapping. Catching such an error requires
only careful reasoning about simple set theory and a tiny bit of arithmetic,
using elementary logic. Someday, computers should be very good at such
reasoning.

5.4.3 Refinement of Fairness

This section shows how to prove that a program refines the fairness property
of another program by sketching the proof of one example: OB implies
LMPFair. Define

OBB = O(Invep A Inugy) A O[Nextop) A OBFair

VOB

where Invep is the invariant satisfied by OB defined by (4.6) and (4.17),
and Invg, is an invariant of LM. For our example, we just require that
Invg,, implies type correctness of LM . Formula OBB is a O formula that is
implied by OB. (We have proved that OB implies LMSafe, which implies
that Invg, is an invariant of OB.) We prove = OBB = LMFuir.
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Ay Qon Bop Pog
Wait;,,(0) || A peop(0) € {wait, w2} | W2,5(0) | A pcos(0) = w2
A peop(l) ¢ {cs, exit} A —z(1)
WaZtLM(].) VAN pcOB(]-) S W2OB(1) VAN pCOB(]-) - w2
{wait, w2, w3, wi} A —z(0)
A peop(0) ¢ {cs, exit}
CSLM(p) pCos(p) =CSs CSOB(p) pCOB(p) =CSs
Exit,y(p) || pcos(p) = exit Exitos(p) | pcos(p) = cs

Figure 5.3: Formulas Byg, Pog, and Qo5 for the actions A, with p € {0,1}.

We use Theorem 4.7 to write LMFair as the conjunction of weak fairness
of Wait,y(p), CSuu(p), and Exit,y(p), for p € {0,1}. So, we have to prove
= OBB = WF,,,,(A.;y) for Ay equal to each of those six actions. By
(4.15), we can do this by proving:

(5.17) = OBB = (OE(Apu)u,y ~ (Aiw)

ULM)

We prove (5.17) by finding an action By and state predicates Py and Qop
satisfying the following conditions:

Al 1. ): In’UOB VAN In’ULM VAN [E<ALM>'ULM = QOB
2. ): OBB = (DQOB s DP()B)

A2. 1. &= Invop A Invpy A Pop = IE<BOB>UOB
2. E OBB = WF'L)OB(B()B)

A3. = Invog N Invpy A Pog N (Bog)voy = (Arm)

VLM

To show that these conditions imply (5.17), we have to show that they imply
that in any behavior o satisfying OBB, if OE( Ay )y, ,, 1 true of o™ | then
o(n) = o(n+1) is an <A7LM>E step for some n > m. Condition Al.1
implies O Qo is true of ™™ | which by A1.2 implies 0P is true of o4 for
some ¢ > m. By the definition of WF, conditions A2 imply o(n) — o(n+1)
is a (Bog)uvys Step for some n > ¢, and A3 implies that (Bog)y,, step is
an (Apy);— step.

The formulas Byg, Pos, and Qop used for the six actions A;,; are shown
in Figure 5.3. Condition A2.1 for the actions A, follows easily from the
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definitions of Byz and Pys. To show that A2.2 is satisfied, we apply Theo-
rem 4.7 to write OBFair as the conjunction of weak fairness of the actions
described by each process’s statements other than its ncs statement. That
A3 is satisfied for the four actions A, in Figure 5.3 follows from conditions
R3a, R3c, R6, and R7 of Section 5.4.2.

This leaves condition Al for the actions. Al.l is proved by using
the type correctness invariant implied by Inv;, to show that [E(Ay)y,,,
equals [E(A.)), and then substituting pcBares for pe,y and semBarog
for semyy in [E(ALy). For our example, this actually shows that Invg,,
implies [E(Au)v,,, = Qos for all the actions A, Al.2is trivially satisfied
for CS,u(p) and Exityy,(p), since Qo and Pyp are equal. The interesting
conditions are Al.2 for Wait;)(0) and Wait,,(1). They are the kind of
leads-to property we saw how to prove in Section 4.2.5. In fact, we now
obtain a proof of Al1.2 for Wait,,(0) by a simple modification of the proof
in Section 4.2.5.3 that OB implies:

(5.18) (pc(0) € {wait, w2}) ~ (pc(0) = cs)

Let’s drop the subscript OB, so the variables in any formula whose name
has no subscript are the variables of OB. The proof of (5.18) is described
by the proof lattice of Figures 4.4 and 4.5. A O formula in a label on a
box in a proof lattice means that the formula is conjoined to each formula
inside the box. Since F ~» G implies (OH A F') ~ (OH A G) for any F,
G, and H, we obtain a valid proof lattice (one whose leads-to assertions are
all true) by conjoining OInv,, A OBFair A OQ to the labels of the outer
boxes in the lattices of Figures 4.4 and 4.5. This makes those labels equal
to OBB ADOQ. Since @ implies pc(0) € {wait, w2}, we obtain a valid
proof lattice by replacing the source node of the lattice in Figure 4.4 by
O0@. Moreover, since the new label’s conjunct 0@ implies O(pc(0) # cs),
so it’s impossible for pc(0) ever to equal cs, we can remove the sink node
pc(0) = cs and the edges to and from it from the lattice of Figure 4.5.3
Since the label on the inner box containing O-z(1), which is the new sink
node, implies O(pc(0) = w2), we now have a valid proof lattice that shows:

= 0BB = (0Q ~ D((pe(0) = w2) A —a(1)))

This proves A1.2 for the action Wait,,,(0).
To prove A1.2 for action Wait, (1), it suffices to assume OBB and prove
0@ ~ OP for the formulas P and @ given in Figure 5.3 for the action. Here

3Equivalently, we can remove edge 8 and add an edge from pc(0) = c¢s to FALSE and
an edge from FALSE to O-z(1), since FALSE implies anything.



CHAPTER 5. REFINEMENT 181

is the proof sketch, which uses without mention some simple temporal logic,
including transitivity of ~».

1. 0Q = O-z(0)

1.1. OQ = O(pc(0) ¢ {wait, w2})
PROOF: We proved in Section 4.2.5.3 that pc(0) € {wait, w2} leads to
pc(0) = es, and OQ implies O(pc(0) # cs).

1.2. OQ A O(pc(0) ¢ {wait,w2}) = O(pc(0) = nes)
PROOF: @ implies pc(0) ¢ {cs, exit}, which by Inv and pc(0) ¢ {wait, w2}
implies pc(0) = nes.

1.3. Q.E.D.

PROOF: By steps 1.1 and 1.2, since Inv A @ imply pc(0) = nes, and Inv
and pc(0) = nes imply —z(0).
2. 0Q N O-z(0) ~ OP
2.1. O0Q A O-z(0) ~ (pc(1) = w2)
PRrROOF: @ implies pe(l) € {wait, w2, w3, w4}, and a straightforward
proof using fairness of PNext(1) and O-z(0) shows
(pe(1) € {wait, w2, w3, wd}) ~ (pc(1) = w2)
22. 0Q AN O-z(0) A (pe(1) = w2) = O(pe(l) = w2)
PrOOF: OQ implies O(pc(l) # c¢s), and (pe(l) = w2) A O[Next], A
O(pc(1) # es) implies O(pe(l) = w2).
2.3. Q.E.D.
PROOF: Steps 2.1 and 2.2 imply OQ A O-z(0) ~ O(pe(1) = w2), and
OP equals O(pc(1) = w2) A O-z(0).
3. QE.D.
PROOF: By steps 1 and 2,

5.4.4 A Closer Look at [E
5.4.4.1 A Syntactic View

Section 4.2.1 explained [E semantically, defining [E(A) to be true of a state
s iff there exists a state ¢ such that action A is true of the step s — t. We
now translate this semantic definition into a syntactic definition of [E(A4). A
state is an assignment of values to variables, so we can restate that definition
as:
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El. [E(A) is true for an assignment of values to the unprimed variables
iff there exists an assignment of values to the primed variables that
makes A true.

A state predicate is true of a state iff it is true when its variables have the
values assigned to them by the state. We can restate E1 as:

E2. [E(A) is true (of a state) iff there exist values of the primed variables
for which A is true.

We will now translate E2 into a precise syntactic definition of [E.

To do this, for any variable z, we now regard = and z’ as two unrelated
symbols. For an expression exp, we take exp’ to be the expression obtained
by priming all the variables in exp. If exp contains a defined symbol whose
definition contains variables, then all the variables in that definition are
primed in exp’.

We now define AWITH to be substitution like WITH, except regarding z’
as being a different variable from z. For example, if z, y, and z are variables,
then:

(z'=2z4+1)WITHz <y —2 equals (y—2)=(y—2)+1
(' =z+1) AWITH 2 + y — 2z equals 2/ = (y—2)+1
(' =z+1) AWITH 2/ < y — zequals (y—z2)=z+1
If sym is a defined symbol, then
(' =z + sym) AWITH 2’ + y — 2
equals
(y —2) =z + (sym AWITH z’ < y — 2)

If sym 2 V2% z'/, then this equals

(y—2)=x+/2%(y — 2)

Now let A be an action and let z1, ..., z, be all the variables that
appear in A. We can then write E2 as:
(5.19) E(A) £ Fep,..., ¢n : (AAWITH 2y < ¢, ..., 'y < ¢p)
Thus, we obtain [E(A) from A by replacing the primed variables by bound
constants that are existentially quantified. We informally describe this def-
inition by saying that [E(A) is obtained from A by existentially quantifying
its primed variables.
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5.4.4.2 Computing [E

The syntactic definition (5.19) of [E immediately provides rules for writing
[E(A) in terms of formulas [E(B;), for B; subactions of A. From the rule

EF(Jc: AVB) = (3c: A)v(3c: B)
we have
El. =E(AV B) = E(A)V [E(B)

For example, in program LM defined in Section 4.2.6.1, the next-state action
PNezt(p) is the disjunction of actions Nes(p), Wait(p), Cs(p), and Exit(p).
Therefore, rule [E1 implies

[E(PNezt(p)) = [E(Nes(p)) VvV E(Wait(p)) vV [E(Cs(p)) vV E(Ezit(p))
The generalization of [E1 is:
E2. EE@icS:A) = Jies: E(A;)

where S is a constant or state expression.

Another rule of existential quantification is that if the constant ¢ does
not occur in A, then Jc¢: (A A B) is equivalent to AA (I ¢: B). From this
we deduce:

[E£3. If no variable appears primed in both A and B, then = E(AA B) =
E(A) A E(B).

For example, in program LM we have:

Wait(p) = A (sem =1) A (pe(p) = wait)
A sem’ =0
A pc’ = (pc EXCEPT p — cs)

Therefore, rule [E3 implies

(5.20) [E(Wait(p)) = A E((sem =1) A (pe(p) = wait))
A [E(sem’ = 0)
A [E(pc’ = (pc EXCEPT p + cs))

The following two rules also follow easily from (5.19) and properties of ex-
istential quantification:

[E4. If P is a state predicate, then = [E(P) = P.
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[E5. If z is a variable and exp is a state expression, then = [E(z' = exp) =
TRUE.

From (5.20), [E4, and [E5, we deduce that [E(Wait(p)) equals (sem = 1) A
(pc(p) = wait). Here is another obvious rule, which can be considered a
generalization of [E5, since ¢ = exp is equivalent to ¢ € {exp}:

[E6 If z is a variable and ezp is a state expression, then = [E(z’ € exp) =

(exp # {}).

Rules [E1-[E6 are sufficient for computing [E(A) for almost all subactions
A that, like PNezt(p), appear in the definition of a program’s next-state
action. However, the definition of fairness does not contain such formu-
las [E(A). Instead, it contains formulas of the form [E(A),, which equals
[E(A A (v' # v)). None of those rules apply to such a formula. In particular,
[E3 does not apply because v is the tuple of all the program’s variables.

Most of the time, a subaction A in the definition of a program’s next-
state action does not allow stuttering steps. Therefore, (A), equals 4, so
[E(A), equals [E(A) and we can apply the rules. For example, [E( PNext(p)),
equals [E(PNezt(p)) because a PNext(p) step changes the value of pe(p), so
it can’t be a stuttering step. We are using the substitutivity rule (3.34) of
ordinary math to deduce

= (A=B) = (E(A) = [E(B))

(Even though substitutivity is not valid for TLA or the Logic of Actions, we
can apply it to the syntactic definition (5.19) of [E, which treats z and z’ as
two different variables of ordinary math—that is, two different constants.)

However, we can’t deduce PNext(p) = (PNext(p)), from the definition
of PNext(p). For example, if pc(p) = cs, then the definition of PNezt(p)
asserts

pc’ = (pc EXCEPT p +— exit)

If p is not in the domain of pe, then pc’(p) = pe(p). If pe is not a function,
then we have no idea what pc’(p) equals, so it could equal pc(p). Fortu-
nately, we care what [E{ PNext(p)), equals only in reachable states of LM.
So, we just have to prove that Inv implies [E{ PNext(p)), = [E(PNext(p))
for an invariant Inv of LM that asserts type correctness. To do this, we
observe that for any action A and state predicate P, rules [E3 and [E4 imply
P ANIE(A) = [E(P A A). So, to prove that Inv implies [E(PNext(p)), =
[E(PNext(p)), it suffices to prove

= Inv = ((PNext(p)), = PNext(p))
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which is straightforward. In general, we reason about liveness under the
assumption that the program’s safety property is satisfied, so we can assume
Olnw is true for an invariant Inv of the program.

Since the formula O[Next], always allows stuttering steps, there is no
need for a next-state action Next to allow them. Usually, it doesn’t. How-
ever, there is no reason for Next not to allow stuttering steps, and sometimes
it’s more convenient to write a subaction A that allows them. In that case,
we have to use the definition (5.19) to compute [E(A),. However, we apply
the definition to [E(Inv A (A),), which equals [E{(Inv A A),, for a program
invariant Inv.

5.4.4.3 The Trouble With [E
Refinement is based on substitution. Program OB refines LM means:
(5.21) &= OB = (LM WITH pc < pcBar, sem < semBar)

We no longer need the subscripts that were added to help us understand
which program an identifier refers to. We continue using the abbreviation
that, for any formula F":

F 2 (F WITH pc « pcBar, sem < semBar)

Almost without thinking, we replaced Init A O[Next]|, with the equivalent
property Init A O[Next|y. We were actually using these three rules:

e FAG = F AG for any formulas F' and G.

e OF = OF for any formula F.

e [A], = [A]s for any action A and state expression v.

The first asserts that substitution distributes over V; the second asserts
that substitution distributes over O; and the third asserts that substitution
distributes over the construct [...] .

We expect substitution to distribute in this way over all mathematical
operators, so we would expect [E(A) and [E(A) to be equal for any action A.
In fact, they are equal for most actions encountered in practice. But here’s

an action A for which they aren’t for the refinement mapping of (5.21):

A 2 Apd =(pe{0,1} — wait)
A sem’ =0
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Rules [E3 and [E5 imply that [E(A) equals TRUE, so [E(A) equals TRUE. By
definition of the refinement mapping:

A £ A peBar' = (p € {0,1} — wait)
A semBar’' =0

A implies pcBar'(p) = wait for p € {0,1}. By definition of pcBar, this
implies:

(1) pd'(p) € {w2, w3, wd, wait} for p equal to 0 or 1.
But A4 also implies semBar’ = 0, which by the definition of semBar implies:
(2) pc(p) € {es, exit} for p equal to 0 or 1.

Both (1) and (2) can’t be true, so A must equal FALSE and thus [E(4)
equals FALSE. Therefore, [E(A) does not equal [E(A), so substitution does
not always distribute over [E.

The reason substitution doesn’t distribute over [E is that [E(A) performs
the substitutions pc < pcBar and sem < semBar for the primed variables
pc’ and sem’. However, as we see from (5.19), those primed variables do not
occur in [E(A); they are replaced by bound constants. The substitutions

should be performed only on the unprimed variables. Therefore:

[E(A) WITH pc ¢ ...,sem < ...
does not equal

[E(A WITH pc 4 ...,sem < ...)
Instead, it equals

[E(A AWITH pc < ..., sem < ...)

which substitutes only for unprimed variables.

Since WF and SF are defined in terms of [E, substitution does not dis-
tribute over them either. We proved that OB refines LM by proving that OB
implies WF, (A) for six actions A. To evaluate WF,(A), we expanded the
definition of WF. Since substitution distributes over all the operators other
than [E in the definition of WF,(PN), including in the definition PN (p),
we could perform the substitutions everywhere in the resulting formula ex-
cept in [E(A),). We could then have used (5.19) to expand the definition
of [E and perform the substitution on the resulting formula, which contains
no primed variables. (This is equivalent to performing the substitution in

[E(A),, except using AWITH instead of WITH.)
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While expanding the definition of [E in this way would have allowed
[E(A), to be evaluated, it would have required applying [E to an action
that was more complicated than (A),. That’s not what we did in the proof
sketch in Section 5.4.3. Instead we showed that (A), equals A and performed
the substitution on [E(A). Showing (A), = A required an invariant Inv of
LM, but because OB refines LMSafe, the formula Inv is an invariant of OB,
allowing us to deduce that [E(A), equals A.

Substitution not distributing over [E makes [E mathematically weird.
You should be suspicious of such weird things. The operators O and ’
(prime) that TLA adds to ordinary math are weird because they are not
substitutive. But substitution does distribute over them. Moreover, tempo-
ral logic is a well-studied field of math. I find [E weirder than the temporal
logic operators.

However, fairness is an important concept in concurrent programs. The
WEF and SF operators are the mathematical expressions of what fairness has
meant since Dijkstra introduced the assumption of weak fairness in 1965 [9].
There seems to be no good way to express it mathematically without the
operator [E.

A similarly weird operator has been at the heart of traditional programs
since the earliest coding languages—namely, the action composition operator
“” introduced in Section 3.4.1.4. If z1, ..., x, are all the variables that
appear in actions A and B, then A - B can be defined syntactically by:

A
A-B = Fep,.oo, e 0 A(AAWITH 2'1 < ¢1,.00, 2/ < cp)
A (B AWITH T1 4= C1,..., Tp < Cp)

The primed variables of A and the unprimed variables of B are replaced by
bound constants, and substitution does not distribute over “-” for the same
reason it doesn’t distribute over [E.

The common methods for reasoning about traditional programs written
in an imperative language can be viewed as a form of Hoare logic. As ex-
plained in Appendix Section A.4, such a logic can be viewed mathematically
as defining the meaning of a statement S to be an action Ag. If the mean-
ings of statements S and T are the actions Ag and Ar, then the meaning
of §; T is the action Ag - Ap.

With this way of reasoning, the semicolon of imperative coding languages
therefore has the same weirdness as the [E operator. I suspect this was never
discovered because people thought of programs in terms of conventional
code, and it makes no sense to implement a variable z by an expression
when z can appear in an assignment statement z :=....
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5.5 A Warning

We have defined correctness of a program S to mean = S = P for some
property P. We have to be careful to make sure that we have chosen P so
that this implies what we really want correctness of the program to mean.
As discussed in Section 4.3, we have to be concerned with the accuracy of P.

When correctness asserts that S refines a program T, the property P
is (T WITH ...) for a refinement mapping “...”. That refinement mapping
is as important a part of the property as the program 7', and it must be
examined just as carefully to be sure that proving refinement means what
you want it to. As an extreme example, OB also implements LM under this
refinement mapping:

pepw < (p € {0,1} — ncs), sempy < 1

Implementation under this refinement mapping tells us nothing about OB,
because under it, every behavior of OB implements a behavior in which all
processes remain forever in their noncritical sections. The program obtained
by replacing the next-state action of OB by FALSE also implements LM
under this refinement mapping.

Such an egregiously useless refinement mapping can often be detected
because, under a refinement mapping that implements behaviors of a pro-
gram T by behaviors of program S that do nothing, S won’t implement
the fairness properties of T. However, programs often don’t require that
actions representing the initiation of an operation by the environment ever
occur. In such a case, it’s a good idea to make sure that S refines T when
fairness requirements are added to those actions in both programs. This is
an application of the general idea of adding fairness to verify possibility that
was introduced in Section 4.3.2.



Chapter 6

Auxiliary Variables

An auxiliary variable is a variable that is added to an abstract program
without altering the values assumed by the program’s regular variables. It’s
sometimes necessary to add auxiliary variables to a program in order to prove
that it refines another program. Sections 6.2, 6.3, and 6.4 define the three
kinds of auxiliary variables that may be needed, illustrating them with silly
little examples. Section 6.5 describes a realistic example that makes use of
all three kinds of auxiliary variables. We begin with a section that explains
variable hiding, which is the basis for auxiliary variables and is also used in
Chapter 7.

6.1 Variable Hiding

6.1.1 Introduction

Recall the behavior predicate Fo, discussed in Section 4.1.2, that is true of
a behavior iff the value of z can equal 2 in a state only if  equaled 1 in a
previous state. We gave a semantic definition of Fig; it can’t be expressed
in RTLA or TLA as those languages have been defined so far. We observed
that Fjo can be expressed as the abstract program S12, defined in (4.2), by
introducing an additional variable y.

The variable z that we're interested in is called an interface variable.
The variable y that’s used only to describe how the values of x can change
is called an internal variable. There’s a problem with using the internal
variable y to describe Fio. Consider the abstract program S, that starts
with £ = 0 and can keep incrementing z by one:

A

S, = (z=0) A0 =2+1],

189
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Since S, allows z to equal 2 only after it has equaled 1, it satisfies property
F15. However, S, doesn’t imply S12 because S12 describes how the values of
z and y change, while S, allows behaviors in which y can have any values.

We want to express Fyo by a formula that asserts of a behavior o that
there is some way to assign values to y that makes S12 true, but says nothing
about the actual values of y. As mentioned in Section 4.1.2, that formula is
written 3y : S12. The operator 3 is explained here.

In ordinary math, the formula 3y : z * y? = 36 asserts that there is some
value y for which z * y? equals 36, but says nothing about the actual value of
y. The variables of ordinary math correspond to the constants of temporal
logic. The y in y: S12 is a constant, so that formula asserts that there is a
constant value y that satisfies S12; and that value equals TRUE if the initial
value of z is 1, otherwise it equals FALSE. Formula Jy: 519 asserts that z
can never equal 2 unless the initial value of z is 1, which is not what Fyo
asserts.

The formula 3y : S1o is true of a behavior iff the values of z in that
behavior are the same as its values in a behavior satisfying 512, where y is a
variable rather than a constant; but it says nothing about the actual values
assumed by y. Thus, y is not a (free) variable of dy:S12. The precise
definition of 3 is subtle and is given below. For now, we just need to know
that [y :S12] equals Fio. I like to say that y: S92 is formula Sio with
y hidden, because 3 corresponds to what hiding seems to mean in coding

languages.
We can now generalize abstract programs to allow quantification over
variables. As with the operator 3, we let y1,...,y, : F be an abbreviation

for Ayy:...3y,: F. The general form of an abstract program with hidden
variables is:

(6.1) y1,...,yx : Init NO[Next], A L

with internal (bound) variables y1, ..., yg. (The interface variables are the
free variables of the formula.) Theorem 4.8 shows that any property that
can be described mathematically can be written in this form, with a single
bound variable. However, 3 is of little use in practice. The only role it
plays is telling us that, when implementing the program, it doesn’t matter
how the internal variables are refined. That can be stated just as well in a
comment; we don’t need to introduce a new operator just for that. In fact,
although 3 is an operator of TLA™ and is recognized by the parser, none of
the current tools handle it. Model checking formulas containing 3 seems to
be computationally infeasible. I don’t know of any engineer wanting to use
it.
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The reason to understand the temporal existential quantification oper-
ator 3 is that it is the logical underpinning of important concepts such as
the auxiliary variables discussed in this chapter.

6.1.2 Reasoning About 3

Allowing an abstract program to be described with a formula of the form
(6.1) raises the question of how to reason about such formulas. The answer
is that the operator 3 obeys the rules for the quantifier 3 of predicate logic
given in Section 2.1.9.3, except with program variables (now called variables)
replacing the mathematical variables (now called constants). There are two
ways we want to reason about the formula (6.1): (1) show that it satisfies a
property G, and (2) show that it is refined by a program T.

For (1), we use the 3 elimination rule (the analog of the 3 elimina-
tion rule of predicate logic) when the bound variable does not occur in the
formula being proved. If v does not occur (free) in G, then that rule asserts

EFF=G implies kE@Qv:F)=G

Therefore, if none of the variables y; occur in G, by applying the rule mul-
tiple times we prove

):(aylw"ayk : S):>G

by proving |= S = G, treating the internal variables y; and the interface
variables the same. If y; occurs free in G, then we can replace it in the
quantified formula by any variable that does not occur in G or §.

For (2), applying the 3 Introduction rule multiple times, we prove

(62) T = Ay1,...,yx : S
for a program T by proving:
(6.3) = T = (S WITH y; < expi,...,Yi < €Ipk)

for expressions ezp;. For every interface variable z of S, which in practice
must also occur in T, the WITH clause includes an implicit substitution
z < = that substitutes the variable x of T for the variable z of S. Thus,
the wiTH clause describes a refinement mapping under which 7' refines S.
This raises a question: If (6.2) is true, do there always exist expressions
exp; for which (6.3) is true? The answer is no, if we can use only the variables
that appear in T to define the refinement mapping. If S has the form
Init A O[Next], A L, then the answer is yes if we're allowed to add auxiliary
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variables to T'. Adding an auxiliary variable a (which does not occur in T)
to T means writing a formula 7% such that 3a: T* is equivalent to T. By
this equivalence, we can verify = T' = S by verifying = (3a: T%) = S. By
the 3 Elimination rule, we do this by verifying = T* = S. And to verify
this, we can use a as well as the variables of T to define the refinement
mapping. Auxiliary variables are the main topic of this chapter and are
discussed below.

6.1.3 The Definition

The standard way temporal existential quantification is defined in most tem-
poral logics is not suitable for TLA because it does not preserve stuttering
insensitivity (SI), defined in Section 3.5.3. It’s the natural way to define it
for RTLA, so we will call the operator defined in that way Jgrpa.

To define rrpa, we first define s =, ¢ to be true for states s and ¢ iff the
values of all variables except y are the same in states s and ¢. Remembering
that o(7) is state number i of a behavior o, we define the relation ~, on
behaviors by:

o~y = VieN:o(i) =,7(i)

Therefore, o ~, 7 asserts that behaviors ¢ and 7 are the same except for
the values assigned to y by their states. We then define gt y: F to be
satisfied by a behavior ¢ iff it is satisfied by some behavior 7 with o ~, 7.

The operator Azyra is not a suitable hiding operator for properties, and
hence not suitable for TLA, because the formula Jgra v : F need not be a
property even if F' is. For example, let F' be the following formula, where
| 7] is the largest integer less than or equal to r:

(6.4) (z=y=0) A D[y =y+1) A" =1y/2])](zy)

Ignoring the values of other variables, the property F' is satisfied by this
non-halting behavior with no stuttering steps:

[x::(]] _)lx::O] _>—3:::1_ _)[x::l] _>lx::2] o
y::OO y::l1 _y::2_2 y::33 y::44

The non-halting behaviors of dgra v : F consist of this behavior:

= )

(65) [« ::O}OH E ::OL% ERRINEE 1}3% EE 2}4a-.-

12
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and behaviors obtained from it by adding stuttering steps. An SI formula
containing the one free variable z that allows behavior (6.5) should also
allow this behavior:

(6.6) [x ::0}0—> [x : 1}1—> [m : 2] - [x : 3}3% [x :;4}4%...

2
which Jgyra v : F does not allow, so it is not a property.

To obtain the proper quantifier 3 for TLA, we modify the definition of
Jrria so Ay F is satisfied by (6.6). The definition of 3 is the same as that
of rrra except with the relation ~, on behaviors replaced by a relation
~y. This relation is defined so o ~, 7 means approximately that o can be
obtained from 7 by adding and removing stuttering steps and then changing
the values of y. The precise definition of ~, is a bit subtle. (In fact, its
definition in [34] is wrong.) To define ~,, we first define the operator g,
on behaviors. This operator is the same as the operator § defined in (3.37)
except with “=" replaced by “=,”. Thus, §, removes “almost stuttering”
steps instead of just stuttering steps, where a step s — t is almost stuttering
if s =, t. Here’s the precise definition:

hy(0) = 1 VielN : o(i) =,0(0)
THEN ©
ELSE IF 0(0) =,0(1) THEN f,(Tail(o))
ELSE (0(0)) o tiy(Tail(o))

We now define ¢ ~ , 7 to equal f,(0) ~,f,(7) and define Iy : F to be
satisfied by a behavior F' iff there is a behavior 7 satisfying F' such that
o ~y7. Observe that 0 ~, 7 implies ¢ ~, 7. Therefore, gria v : F
implies 3y : F for any behavior predicate F.

One reason not to use 3 is that if S is a safety property, then 3y : S
need not be a safety property. Temporal quantification destroys the nice
separation of safety and liveness provided by our way of describing abstract
programs. For example, let F' be this safety property for an abstract pro-
gram:

(6.7) A (z=0) A (y € IN)
ADlly>0) A (@' =2 +1) A (' = y— Dliay)

In a behavior satisfying this formula, z cannot be incremented forever be-
cause eventually y would equal 0, making any further non-stuttering steps
impossible. Therefore, formula 3y : F' is equivalent to

(6.8) (r=0) AO[z' =2+1], A 002" = 1],
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To see that this is not a safety property, remember that a behavior o satisfies
a safety property iff every finite prefix of o satisfies that property. Consider
a behavior ¢ in which z does keep being incremented forever. Every finite
prefix of o satisfies (6.8), since completing the prefix with stuttering steps
makes the behavior satisfy the liveness property ¢O[z' = z],. However, o
doesn’t satisfy (6.8) because it doesn’t satisfy this liveness property. There-
fore, even though formula F', defined to equal (6.7), is a safety property,
formula 3y : F, which is equivalent to (6.8), is not a safety property.

6.2 History Variables

The simplest kind of auxiliary variable is a history variable. As the name
implies, a history variable is used to remember things that happened in the
past and can’t be deduced from the current state. We may need to add a
history variable to T to prove = T' = S when the internal state of S records
information about past events that isn’t needed to describe the behavior of
its interface variables.

6.2.1 How to Add a History Variable

Except in one unusual case described in Section 6.3.5, we add an auxiliary
variable to an abstract program by adding it to the safety part of the pro-
gram. Thus, if T equals Init A O[Next], A L for a liveness property L, then
the formula 7" obtained by adding a history variable h will equal

Init" A O[Nexth],, A L

where Init" and Next" are obtained by augmenting Init and Next to de-
scribe, respectively, the initial value of A and how h can change; and vh is
the tuple v o (h) of the variables of v and the variable h. Since h does not
appear in L, the formula 34 : T" equals

(3h : Init" A O[Next"],,) A L

We can therefore ignore L for now, so we assume T equals Init A O[Next],
and show how to define Init" and Next".

We use a tiny example to illustrate history variables. There is an abstract
program in which a user inputs a sequence of real numbers and the system
displays the average of the numbers entered thus far. The interface variables
are inp and avg. Initially, inp equals a value rdy that is not a number and
avg = 0. The user’s input action sets inp to a real number and leaves avg
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A

InitS = (inp = rdy) A (avg =0) A seq = ()

A

mnp = rdy
np’ € IR
(avg’ = avg) A (seq’ = seq)

User

A
A\
A

Syst SN mp € R
A seq’ = Append(seq, inp)
A avg' = SeqSum(seq’) / Len(seq’)
A inp’ = rdy

NextS = UserV Syst
N} 2 InitS A D[Nexts]@np,avg,seﬂ
S 2 ZFseq: IS

Figure 6.1: The abstract averaging program S.

unchanged. The system’s output action sets avg to the new average of the
inputs and resets inp to rdy.

This abstract program is described by formula S of Figure 6.1. It uses
an internal variable seq whose value is the ordinal sequence of numbers
input so far. Recall that IR is the set of real numbers, and Section 2.3.2
defines these operators on sequences seq: Append(seq, inp) is the sequence
obtained by appending inp to the end of seq; Len(seq) is the length of seq;
and Tail(seq) is the sequence obtained by removing the first element of
seq if seq is nonempty. The operator SeqSum is defined as follows so that
SeqSum(sq) is the sum of the elements of a finite sequence sq of numbers:

SeqSum(sq) = 1F sq= () THEN 0 ELSE sq(1) 4 SeqSum(Tail(sq))

Using the internal variable seq to write the behavior predicate S is arguably
the clearest way to describe the values assumed by the interface variables inp
and avg. It’s a natural way to explain that the value of avg is the average of
the values that have been input. However, it’s not a good way to describe
how to implement the system. There’s no need for an implementation to re-
member the entire sequence of past inputs; it can just remember the number
of inputs and their sum. In fact, it doesn’t even need an internal variable to
remember the sum. We can implement it with an abstract program T that
implements S using only a single internal variable num whose value is the
number of inputs that the user has entered.
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variables inp = rdy, avg = 0, num =0 ;
while TRUE do

usr: mp € IR ;

sys: avg := (avg * num + inp) / (num + 1) ;

num 1= num+ 1 ;
inp = rdy
end while

Figure 6.2: Abstract program T in pseudocode.

We first describe T in pseudocode and construct 7" by adding a history
variable h to the code. The TLA translations of the pseudocode show how
to add a history variable to an abstract program described in TLA.

It’s natural to think of the user and the system in this example as two
separate processes. However, the abstract programs S and T are predicates
on behaviors, which are mathematical objects. Process is not a mathemat-
ical concept; it’s a way in which we interpret predicates on behaviors. For
simplicity, we write T as a single-process program.

The pseudocode for program T is in Figure 6.2. It uses the operator :€
introduced in Figure 4.8, so statement usr sets inp to an arbitrary element
of IR.. Since we’re not concerned with implementing 7', there’s no reason to
hide its internal variable num.

Because the sum of » numbers whose average is a is n * a, it should be
clear that program 7 implements program S. But showing that T imple-
ments S requires defining a refinement mapping under which 7" implements
IS (program S without variable seq hidden). And that requires adding an
auxiliary variable that records the sequence of input values. Adding the
required auxiliary variable h is simple and obvious. We just add the two
pieces of code shown in black in Figure 6.3.

It is a straightforward exercise to prove

= Th = (IS WITH inp < inp, avg < avg, seq < h)
using that fact that
avg = 1F h =) THEN 0 ELSE SeqSum(h)/ Len(h)

is an invariant of T". To show that this proves = T = S, we have to show
that T" actually is obtained by adding the auxiliary variable h to T—that
is, we have to show that T is equivalent to 3 h: T". This requires showing
Q) E@h: T = Tand (ii) T = (3h: T").
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h := Append(h,inp) ;

Figure 6.3: T

To show (i) we have to show = T" = T, which is obvious because it’s
easy to see that the initial predicate and next-state action of T" imply the
initial predicate and next-state action of T'. To show (ii), we have to show
that for any behavior ¢ satisfying T there is a behavior 7 satisfying 7" with
T ~p 0. From the code for T", it’s easy to obtain a recursive definition of
the value of h in each state 7(i) of 7. The declaration of h provides the
value of h in state 7(0), and the rest of the code defines the value of A in
state 7(i + 1) as a function of its value and the value of pc in state 7(7).

It’s pretty obvious how to generalize from this example to adding a
history variable h to any abstract program T described by pseudocode. We
let the initial value of h be any expression that can contain the variables of
T. We modify the pseudocode by adding at most one statement assigning a
value to h to any action of the code. The right-hand side of the assignment
can contain h as well as the variables of T. Making this precise would
require making pseudocode precise, which we don’t want to do. When we
want to be precise, we use math.

So, let’s now see how we add a history variable when the abstract pro-
gram T is written in TLA. The translation of the code in Figure 6.2 to TLA
defines

T 2 Init A\ O[Next](inp avg,num) Where Neat £ UsrV Sys

Actions Usr and Sys are the actions executed from control points usr and
sys, respectively. The TLA translation of the code in Figure 6.3 is

(6.9) T = Inith A D[Nexth]<mp,avg7num7h>

where Init" 2 Init A (h = ())
Negth £ Usrh v Sys"
Usrh 2 Usr A (h' = h)
Sys" = Sys A (k' = Append(h, inp))
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Here is the general result that describes how to add a history variable to a
program. Its proof is a simple generalization of the proof for our example.

Theorem 6.1 (History Variable) Let T equal Init A O[Next],, where
Next equals 37 € I: A; and v is the tuple of variables in T, and assume h
is not one of those variables. If T" equals Init" A O[Next"],;, where

o Init" = Init A (h = exp)

o Next' = 3Jiel: Ay A (W = exp;)

I

o vh

vo(h)

e exp is a state expression that does not contain the variable h, and the
exp; are step expressions that do not contain »’,

then =7 = 3h:Th.

6.2.2 History Variables and Fairness

We add a history variable h to a safety property T of the form Init \O[Next],
to obtain a formula 7" such that 3h: T" is equivalent to 7. If a program
also contains a liveness condition L, this gives us the program T" A L. Since
the variable h does not occur in L, the formula Ak : T A L is equivalent to
(3h: T") A L which equals T'A L. Therefore the history variable h is an
auxiliary variable for T" A L.

As explained in Section 4.2.7, the standard form for the liveness condition
of a program is the conjunction of weak and/or strong fairness conditions
of subactions of its next-state action. Even if T A L has this form, T" A L
will not because a subaction of Neat will not be a subaction of Next”. (An
action that does not mention A cannot imply Next".) This means that we
can’t apply Theorem 4.6 to show that ( 7" L) is machine closed. However,
we can show as follows that if ( 7', L) is machine closed, then ( 7", L) is also
machine closed. By definition of machine closure, this means showing that
any finite behavior p satisfying 7" can be extended to an infinite behavior
satisfying T" A L. Since T" implies T, machine closure of (T, L) implies p
can be extended to a behavior p o o satisfying T'A L. By definition of T",
we can modify the values of h in the states of o to obtain a behavior such
that p o 7 satisfies T". Since the truth of L does not depend on the values
of h, the behavior p o 7 also satisfies L, as required.

When using TLA, the fact that L will contain fairness conditions on
actions that are not subactions of Next” makes no difference. However, not
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everyone uses TLA. In some approaches, abstract programs are described
in something like a coding language, and they define fairness only in terms
of weak and strong fairness of subactions of the next-state action. So, it is
interesting to know if we can replace a fairness condition on a subaction B;
of T with the same fairness condition on a corresponding subaction B! of
T". We can, under the following condition, which is likely to be satisfied
by programs written in those other languages: The next-state action of T
must be the disjunction of actions A;, and each B; must be a subaction of
A; such that a B; step is not an A; step for j # 4. The precise result is
the following, whose proof is in the Appendix. In this theorem, letting B;
equal FALSE is equivalent to omitting that fairness condition because weak
and strong fairness of FALSE are trivially true. (The action FALSE is never
enabled, so (4.22) implies SF, (FALSE) equals OOFALSE = OOFALSE, which
equals TRUE.)

Theorem 6.2 With the assumptions of Theorem 6.1, for all ¢ € I let B;
be a subaction of A; such that T'A (i # j) = O[~(B; A A;)], for all j in

A

I;and let B = (B;), A (h/ = exp;). Then
T A (Viel:XFi(B;) = 3h:Th A (Viel:XF,(B)
where each XF? is either WF or SF.

6.2.3 A Completeness Result for History Variables

A popular approach to proving safety properties of concurrent programs,
derived from work by Owicki and Gries [42], can prove only invariance
properties. We can, in theory, reduce proving safety properties to prov-
ing invariance. We do this by adding a history variable h to a program T to
obtain a program T". For any safety property F, we can then define a state
predicate I that is an invariant of T" iff (every behavior of) T satisfies F.
The idea is simple: We define the value of h to be the sequence of system
states in the current behavior up to and including the current state. We
then define I g to be true iff the value of h satisfies F'. The result is stated
in the following theorem, whose proof is sketched in the Appendix.

Theorem 6.3 Let T equal Init A O[Next] ) where x is the list of all vari-
ables of S§; let F' be a safety property such that F (o) depends only on the
values of the variables x in o, for any behavior o; and let 4 be a variable not
one of the variables x. We can add h as a history variable to T to obtain
T" and define a state predicate I in terms of F such that = [T] = F is
true iff Iy is an invariant of T".
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A simple example of the theorem is when F' is the safety property Fio
defined semantically by (4.1) of Section 4.1.2. That property asserts  must
equal 1 before it can equal 2. A program Init A O[Next], satisfies F'1 iff the
formula (z = 2) = h is an invariant of the program obtained by adding the
history variable h to that program as follows:

(Init A (h = FALSE)) A D[Next A (h' = hV (2 = 1))]yo(n)

Theorem 6.3 assumes only that F' is a safety property. This might suggest
we can show that one program satisfies the safety part of another program by
verifying an invariance property. However, I have never seen this done, and
in practice it seems unlikely to be possible to describe any but the simplest
abstract programs with an invariant.

6.3 Stuttering Variables

Typically, when a lower-level abstract program T implements a higher-level
abstract program S, program T takes more steps than S does to perform an
operation. Under the refinement mapping, the extra steps of T implement
stuttering steps of S. It’s also possible for S to take more steps than 7. In
that case, defining a refinement mapping requires adding steps to behaviors
of T that implement those extra steps of S. This is done by adding a
stuttering variable s to T. The extra steps are ones that change only s, so
when s is hidden, those steps become stuttering steps of T'.

There are two kinds of stuttering variables used in practice: ones that
add stuttering steps immediately after steps of an action, and ones that add
stuttering steps immediately before steps of an action. They are described
in Sections 6.3.2 and 6.3.3. Multiple such variables can be combined into a
single stuttering variable. Section 6.3.5 explains another kind of stuttering
variable that is never needed in practice but could, in theory, be required.

This section talks about adding stuttering steps, which literally makes no
sense because it’s impossible to require or forbid stuttering steps in a TLA
formula. Here, adding stuttering steps to an abstract program T means
writing a formula 7 containing s and the variables of T by adding steps
that change s and leave the variables of T unchanged, so that 3s: T¢ is
equivalent to 7. In this section, a stuttering step usually means one of those
additional steps that leave the variables of T unchanged and change s.
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6.3.1 The Example

Stuttering variables are explained with the silly example of a tiny censoring
system. An artist paints pictures and submits them to a censor, who decides
either to display or reject each picture. This system is described by the
abstract program Cenl defined as follows.

There are two interface variables inp and disp. The artist submits a
picture w, which is an element of the set Art of all possible pictures, by
setting the value of the variable inp to w. The censor then either displays w
by setting the value of the variable disp to (w, i), where i is set alternately
to 0 and 1, or else rejects w. (The second component of disp is needed
so displaying the same picture twice isn’t a stuttering step, which would
needlessly complicate the example.) The censor then acknowledges receipt
of the picture by setting the value of inp to a special value NotArt that is
not an element of Art.

There is also an internal variable aw that is hidden. The value of aw is
initially the empty sequence (). It is set to (w) when the artist submits a
picture w, and it is reset to () when w is either displayed or rejected. The
value of aw records whether or not the display/reject decision has been made.
That information is encoded in aw this way so the example is more easily
modified to obtain an example in Section 6.4. The complete description of
the abstract program is formula Cenl in Figure 6.4, where ICenl is the
program without ew hidden. (Initially, any painting may be displayed.)

There is another way to describe the artist/censor system as an ab-
stract program. In ICenl, submission of a picture w by the artist is de-
scribed by an input action that sets inp to w and aw to (w). A separate
action DispOrNot either displays or rejects w. We define Cen2 to equal
Jaw: ICen2 where ICen2 describes a program in which it is the input ac-
tion that decides whether to display or reject w, setting aw to (w) iff it
decides to display w. The displaying action always displays w if aw equals
(w). The program Cen2 is defined in Figure 6.5, where v, Init, and Ack
are the same as in Cenl and are defined in Figure 6.4.

If we ignore the values of aw, the only difference between behaviors
of ICenl and ICen2 is that, when a picture is rejected, the behavior of
ICenl takes one more step than the corresponding behavior of ICen2—a
step that leaves inp and disp unchanged. Since inp and disp are the only
free variables in the two definitions of Cen, stuttering insensitivity implies
that the formulas Cenl and Cen2 are equivalent, so they describe the same
abstract program.

To show that the two definitions are equivalent, we have to show that
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Cenl 2 Jaw : ICenl
ICenl = Init A O[Neatl],
v 2 (inp, disp, aw)

Init = A inp = NotArt
A aw = ()
A disp € Art x {0, 1}

Nexztl 2 Input V DispOrNot V Ack
Input = A (inp = NotArt) A (aw = ())

A inp’ € Art
A aw' = (inp")
A disp’ = disp

DispOrNot = A aw # ()
AV disp’ = (aw(1l), 1 — disp(2))

V disp’ = disp
A aw' = ()
A inp’ = inp

Ack = A (inp € Art) A (aw = ()
A inp’ = NotArt
A (aw’ = aw) A (disp’ = disp)

Figure 6.4: The program Cenl.

Cen2 = Faw : ICen2
ICen2 Init A O[Next2],
Next2 2 InpOrNot \V Display V Ack
InpOrNot = A (inp = NotArt) A (aw = ())
A inp’ € Art
AV aw' = (inp")
Voaw' = aw
A disp’ = disp

[l

Display = A aw # ()
A disp’ = (aw(1), 1 — disp(2))
A aw’ = ()
A inp’ = inp
Figure 6.5: The program Cen2.

202
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1Cen1 and ICen?2 each implement the other under a suitable refinement map-
ping. We will see here how to define the refinement mapping under which
1Cen?2 implements ICenl. Section 6.4 shows how to define the refinement
mapping under which ICenl implements ICen?2.

6.3.2 Adding Stuttering Steps After an Action

To define the refinement mapping that shows ICen2 implements ICenl, we
have to add a stuttering step to an execution of ICen2 for each operation of
receiving an input and rejecting it. We do that by adding a stuttering vari-
able that adds a stuttering step after each InpOrNot step of the execution
that rejects the input—that is, after InpOrNot steps that set aw to ().

The simplest stuttering variable s is one whose value is a natural number
that equals 0 except when it is adding stuttering steps (steps that change
only s), in which case s equals the number of such steps it has yet to take.
Here’s how we add such a variable that adds stuttering steps after a subac-
tion A of the next-state action.

Let T equal Init A O[Next],, where Next equals AV (3j € J:B;) for
actions A and B;. We define T to equal Init® A O[Next®],s, where Next®
equals A°V (35 € J: Bj) and Init®, A°, B}, and vs are defined as follows:

S1. wvs is the tuple of variables obtained by appending s to the tuple v of
variables.

S2. Init* = Init A (s =0).

S3. A5 2 V(s=0) A AA (s = exp)
V(s>0) A (W=v)A(sd=s-1)
where exp is an expression whose value is a natural number; it can
contain the original variables primed or unprimed.
S4. BS = (s=0) A Bj A (s'=0), forj € J.
Ignoring the value of s, the behaviors satisfying T are the same as behaviors
satisfying T', except each A step in a behavior of T is followed in T* by a
finite number (possibly 0) of steps that leave the variables of T' unchanged.
Therefore, by stuttering insensitivity, T and Js: T° are satisfied by the
same sets of behaviors, so they are equivalent.
To show that ICen2 implements ICenl, we define ICen2® in this way,
where A equals InpOrNot and the B; are Ack and Display. In the definition
of InpOrNot?, we let:

etp = IF aw’ = () THEN 1 ELSE 0
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This adds a stuttering step to a behavior of ICen2?® after an InpOrNot step
that rejects the input.

Programs ICenl and ICen2® take the same number of steps to process
an input. A stuttering step of ICen2® corresponds to a DispOrNot step of
ICen1 that rejects the input. If we compare behaviors of these two programs,
we find that corresponding states have the same values of the variables inp,
disp, and aw except when ICen2® is about to take a stuttering step. In that
state, s = 1 in ICen2®, and the value of aw for an input w is () in /Cen2®
and (w) in ICenl. This means that the value of aw in a behavior of ICenl
always equals the value of the following state function in the corresponding
behavior of ICen2®:

(6.10) awBar = 1F s =0 THEN aw ELSE (inp)

Therefore, ICen2® implements ICenl under the refinement mapping that
substitutes awBar for aw. In other words:

(6.11) = ICen2® = (ICenl WITH aw <« awBar)

The proof of (6.11) is similar to, but simpler than, the refinement proof
sketched in Section 5.4.2. Here, we give only the briefest outline of a proof
to present results that will be used below when discussing liveness.

Let’s abbreviate (F' WITH aw < awBar) by F for any formula F, so we
must prove |= ICen2® = ICenl. The proof of = Init® = Init is trivial, since
s = 0 implies v = v by definition of awBar, so Init* implies Init = Init.
The main part of the proof is proving;:

(6.12) |= ICen2® = O[Nextl],

This is proved by proving assertions C1-C4 below, which are the analogs of
assertions R1-R7 of the proof in Section 5.4.2. Again, assertions containing
actions of the form (A), are proved for use in reasoning about liveness when a
weaker assertion containing A suffices to prove (6.12). Two of the assertions
require an invariant Inv2® of ICen2°. That invariant needs to assert type
correctness of disp (for C3) and that s = 1 implies aw = () (for C2).

Cl. E (s=0) A InpOrNot® = Input

C2. &= Inv2° A (s =1) A InpOrNot® = (DispOrNot),

C3. | Inv2® A Display® = (DispOrNot),

C4. |= Ack® = (Ack),

Proving these assertions is a good way to start learning to write proofs.

enlargethispage
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Often, when showing that one program implements another, after adding
a simple stuttering variable it’s necessary to add a history variable to be able
to define the refinement mapping. For example, suppose the input actions
of the censor programs set inp to some value Busy instead of letting it be
unchanged. We could then not define awBar to make (6.11) true because the
input value would be forgotten when s equals 1. To define a state function
awBar to make (6.11) true, we would have to add a history variable that
remembers what value was input.

We can avoid having to add a history variable by letting the stuttering
variable carry additional information. This is done by generalizing the way
stuttering steps are counted. In the censor example, instead of setting s
to 1 when adding a stuttering step and to 0 otherwise, we can set it to (w)
when adding the step, where w is the value being input, and to () when not
adding the step. The number of stuttering steps to be taken at any point in
the execution is then the length Len(s) of the sequence s. We would define
awBar to equal:

IF s = () THEN aw ELSE s

In general, we can let s assume values in any set with a well-founded relation,
defined in Section 2.2.6.2 to be a set with an ordering relation in which any
sequence of decreasing elements must reach a minimal element. We just
require that every added stuttering step decreases the value of s.

One use of this generality is for adding stuttering steps after multiple
actions. To do this, we let the value of s be a pair (m, i), where m is the
number of remaining stuttering steps and ¢ identifies the action. We define
the well-founded ordering > on this set of pairs by letting (m,i) = (n,j)
iff m > n. We can use this same trick to let the value of s be a tuple
with additional components. Information in those other components can
be used in defining the refinement mapping so it makes the stuttering steps
implement the appropriate steps of the higher-level program. For simplicity,
we state our theorem just for this particular use of a well-founded order.
However, the conjunct s(2) = ¢ in the definition of A? is added to ensure
that only A? performs stuttering steps added after A;, although that matters
only if s contains additional components that depend on i.

Theorem 6.4 (Post-Action Stuttering Variable)

Let T equal Init A O[Next],, where Next equals (3i€ I:A;) V B for a
constant set I, and v is a tuple of all the variables of T. If T° equals
Init® A O[Next®],s where

e s is not a variable of T and vs = vo (s).
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o Init> = Init A (s =(0,ig)) for some 4o in I.

o Next® = (Ji€l:A5)V B*

A5 2V (s(1)=0) A (s(2) = i) A Ai A (s = (eapy, i)
V(s(1) > 0) A (o =) A (s = (s(1) = 1,5(2)))

where = T = Ofezp,; € IN], and exp; is a step expression not contain-
ing s.

A
A

B* 2 (s(0)=0) A B A (s'=5)

then ds:T% equals T.

The theorem does not assume that the actions A; and B are mutually dis-
joint. A step could be both an A; and an A; step for 7 # j, or both an A;
and a B step. That should rarely be the case when applying the theorem,
since it allows a nondeterministic choice of how many stuttering steps (if
any) are added in some states. The action B will usually be the disjunc-
tion of actions B;. In that case, B* equals the disjunction of the actions
(s(0)=0) A Bj A (s =s).

6.3.3 Adding Stuttering Steps Before an Action

Suppose that instead of adding stuttering steps after InpOrNot steps of
ICen2, we want to add them before Ack steps. That’s a silly thing to do,
but it’s a silly example anyway. One thing that makes it silly is that when
the Ack action is enabled, nothing in the state tells us whether a stuttering
step is necessary. The value of aw is () regardless of whether or not a
Display step has occurred. So we’ll have to add the stuttering step whether
or not it’s needed. But that’s not a problem, since an unnecessary stuttering
step can simply implement a stuttering step of ICenl.

For a simple stuttering variable that counts down to 0, we add stuttering
steps before an action A the way we added them after A, except instead of
A?® executing A in the first step when s equals 0, it executes A in the last
step, when s equals 1 (unless it adds 0 stuttering steps). However, to ensure
that an A® step can be taken after those k stuttering steps, the stuttering
steps can begin only when A is enabled. (Once A is enabled, stuttering steps
leave it enabled.) To add exzp stuttering steps before an A step, we define:

A5 2 AV IE(A) A (s=0) A (s = exp)

V(s>0)A(s=s—-1)
ATF s =0 THEN A ELSE v' = v
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Since A is enabled when s’ = 0 is true, any enabling condition (conjunct
with no primed variable) can be removed from A in the last line of the
definition.

We could define Ack® this way in ICen2® with exp = 1 to add a stut-
tering step before every Ack step. However, there’s nothing in the state to
indicate whether that stuttering step should implement a Display step